Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{x^3+1}\)
\(A=\frac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{3-3x}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(A=\frac{x^3-x^2+x-3-3x+x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(A=\frac{1}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{1}{x^3+1}\)
B1: ĐXXĐ: \(x\ne\pm2;x\ne-1\)
\(=\left(\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}-\dfrac{2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{x}{\left(x+2\right)\left(x-2\right)}\right):\dfrac{-6\left(x+2\right)}{\left(x-2\right)\left(x+1\right)}\)
\(=\left(\dfrac{x-2-2x-2+x}{\left(x+2\right)\left(x-2\right)}\right):\dfrac{-6\left(x+2\right)}{\left(x-2\right)\left(x+1\right)}\)
\(=\dfrac{-4}{\left(x+2\right)\left(x-2\right)}:\dfrac{-6\left(x+2\right)}{\left(x-2\right)\left(x+1\right)}\)
\(=\dfrac{-4}{\left(x+2\right)\left(x-2\right)}.\dfrac{\left(x-2\right)\left(x+1\right)}{-6\left(x+2\right)}=\dfrac{2\left(x+1\right)}{3\left(x+2\right)^2}\)
b, \(A=\dfrac{2\left(x+1\right)}{3\left(x+2\right)^2}>0\)
\(\Leftrightarrow2x+2>0\) (vì \(3\left(x+2\right)^2\ge0\forall x\))
\(\Leftrightarrow x>-1\).
-Vậy \(x\in\left\{x\in Rlx>-1;x\ne2\right\}\) thì \(A>0\).
a. \(A=\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{x^3-1}\left(ĐKXĐ:x\ne1;x\ne-3\right)\)
\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{x+3}{x-1}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{\left(x+3\right)^2}{\left(x-1\right)\left(x+3\right)}-\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+3\right)}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{2-3x+x^2+6x+9-x^2+1}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}.\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{3x+12}=\dfrac{x^2+x+1}{x+3}\)
\(M=A.B=\dfrac{x^2+x+1}{x+3}.\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x-2}{x+3}\)
b. -Để M thuộc Z thì:
\(\left(x^2+x-2\right)⋮\left(x+3\right)\)
\(\Rightarrow\left(x^2+3x-2x-6+4\right)⋮\left(x+3\right)\)
\(\Rightarrow\left[x\left(x+3\right)-2\left(x+3\right)+4\right]⋮\left(x+3\right)\)
\(\Rightarrow4⋮\left(x+3\right)\)
\(\Rightarrow x+3\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow x\in\left\{-2;-1;1;-4;-5;-7\right\}\)
c. \(A^{-1}-B=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{x^3-1}\)
\(=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2-x+3x-3-x^2-x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)
\(=\dfrac{1}{x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)
\(Max=\dfrac{4}{3}\Leftrightarrow x=\dfrac{-1}{2}\)
a, Với \(x=3\)\(=>A=\frac{x-1}{2}=\frac{3-1}{2}=\frac{2}{2}=1\)
Vậy A = 1 khi x = 3
b, Ta có : \(B=\frac{1}{x}-\frac{x}{2x+1}+\frac{2x^2-3x-1}{x\left(2x+1\right)}\)
\(=\frac{2x+1}{x\left(2x+1\right)}-\frac{x^2}{x\left(2x+1\right)}+\frac{2x^2-3x-1}{x\left(2x+1\right)}\)
\(=\frac{x^2-3x+2x+1-1}{x\left(2x+1\right)}=\frac{x^2-x}{x\left(2x+1\right)}=\frac{x\left(x-1\right)}{x\left(2x+1\right)}=\frac{x-1}{2x+1}\)
Ta có : \(A=\frac{x-1}{2};B=\frac{x-1}{2x+1}\)
\(=>C=A:B=\frac{x-1}{2}:\frac{x-1}{2x+1}=\frac{2x+1}{2}=x+\frac{1}{2}\)
đề sai bạn ơi
Với `x \ne -5,x \ne -1` có:
`A=[x+2]/[x+5]+[-5x-1]/[x^2+6x+5]-1/[1+x]`
`A=[(x+2)(x+1)-5x-1-(x+5)]/[(x+5)(x+1)]`
`A=[x^2+x+2x+2-5x-1-x-5]/[(x+5)(x+1)]`
`A=[x^2-3x-4]/[(x+5)(x+1)]`
`A=[(x-4)(x+1)]/[(x+5)(x+1)]`
`A=[x-4]/[x+5]`
\(=\dfrac{x+2}{x+5}+\dfrac{-5x-1}{x^2+x+5x+5}-\dfrac{1}{x+1}\\ =\dfrac{x+2}{x+5}+\dfrac{-5x-1}{\left(x^2+x\right)+\left(5x+5\right)}-\dfrac{1}{x+1}\\ =\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x+5\right)}+\dfrac{-5x-1}{x\left(x+1\right)+5\left(x+1\right)}-\dfrac{x+5}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x+5\right)}+\dfrac{-5x-1}{\left(x+1\right)\left(x+5\right)}-\dfrac{x+5}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{x^2+2x+x+2-5x-1-x-5}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{x^2-3x-4}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{x^2+x-4x-4}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{\left(x^2+x\right)-\left(4x+4\right)}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{x\left(x+1\right)-4\left(x+1\right)}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{\left(x+1\right)\left(x-4\right)}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{x-4}{x+5}\)
a: \(A=\dfrac{x-2-2x-4+x}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-\left(x-2\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\dfrac{-6}{\left(x+2\right)}\cdot\dfrac{-\left(x+1\right)}{6\left(x+2\right)}=\dfrac{\left(x+1\right)}{\left(x+2\right)^2}\)
b: A>0
=>x+1>0
=>x>-1
c: x^2+3x+2=0
=>(x+1)(x+2)=0
=>x=-2(loại) hoặc x=-1(loại)
Do đó: Khi x^2+3x+2=0 thì A ko có giá trị
\(A=\left(\dfrac{1}{x^2-1}+\dfrac{1}{x+1}\right):\left(\dfrac{1}{x-1}-\dfrac{1}{x}\right)\)
\(\Rightarrow A=\left(\dfrac{1}{\left(x-1\right)\left(x+1\right)}+\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}\right):\left(\dfrac{x}{x\left(x-1\right)}-\dfrac{x-1}{x\left(x-1\right)}\right)\)
\(\Rightarrow A=\dfrac{1+x-1}{\left(x-1\right)\left(x+1\right)}:\dfrac{x-x+1}{x\left(x-1\right)}\)
\(\Rightarrow A=\dfrac{x}{\left(x-1\right)\left(x+1\right)}:\dfrac{1}{x\left(x-1\right)}\)
\(\Rightarrow A=\dfrac{x}{\left(x-1\right)\left(x+1\right)}.x\left(x-1\right)\)
\(\Rightarrow A=\dfrac{x^2}{x+1}\)
đk : xkhác -1 ; 1
\(A=\left(\dfrac{1+x-1}{\left(x+1\right)\left(x-1\right)}\right):\left(\dfrac{x-x+1}{x\left(x-1\right)}\right)=\dfrac{x}{\left(x+1\right)\left(x-1\right)}:\dfrac{1}{x\left(x-1\right)}=\dfrac{x^2}{x+1}\)
a: \(=\dfrac{x^3-x^2+x+3\left(x^2-1\right)+x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{x^3-x^2+2x+4+3x^2-3}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x^3+2x^2+2x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{x^2+x+1}{x^2-x+1}\)
b: \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
\(x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
=>A>0 với mọi x<>-1