Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=3x\left(x^2-2x+3\right)-x^2.\left(3x-2\right)+5\left(x^2-x\right)\)
\(=3x^3-6x^2+9x-3x^3+2x^2+5x^2-5x\)
\(=x^2+4x\)
Thay \(x=5\)vào biểu thức ta có: \(A=5^2+4.5=25+20=45\)
b) \(B=x\left(x^2+xy+y^2\right)-y\left(x^2+xy+y^2\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-y^3\)
Thay \(x=10\); \(y=-1\)vào biểu thức ta có:
\(B=10^3-\left(-1\right)^3=1000+1=1001\)
\(\text{a) }\left(x-1\right)^3-\left(x+1\right)\left(x^2-x+1\right)-\left(3x+1\right)\left(1-3x\right)\)
\(=\left(x^3-3x^2+3x-1\right)-\left(x^3+1\right)-\left[1-\left(3x\right)^2\right]\)
\(=x^3-3x^2+3x-1-x^3-1-1+9x^2\)
\(=6x^2+3x-3\)
\(\text{b) }\left(x+y+z-t\right)\left(x+y-z+t\right)\)
\(=\left[\left(x+y\right)+\left(z-t\right)\right]\left[\left(x+y\right)-\left(z-t\right)\right]\)
\(=\left(x+y\right)^2-\left(z-t\right)^2\)
\(=\left(x^2+2xy+y^2\right)-\left(z^2-2zt+t^2\right)\)
\(=x^2+2xy+y^2-z^2+2zt-t^2\)
\(a.\) \(\frac{x^2+y^2+2xy-1}{x^2-y^2+1+2x}=\frac{\left(x+y\right)^2-1}{\left(x+1\right)^2-y^2}=\frac{\left(x+y-1\right)\left(x+y+1\right)}{\left(x-y+1\right)\left(x+y+1\right)}=\frac{x+y-1}{x-y+1}\)
\(b.\) \(\frac{x^3-3x^2-x+3}{x^2-3x}=\frac{x^2\left(x-3\right)-\left(x-3\right)}{x\left(x-3\right)}=\frac{\left(x-3\right)\left(x^2-1\right)}{x\left(x-3\right)}=\frac{x^2-1}{x}\)
năm nay mới lên lớp 8 nên chưa hỉu lắm!!
7657567868976987097907808796979
1/ (x-1)3 - (x+1)3 + 6(x+1) (x-1)
kết hợp 2 bài nhân đơn thức vs đa thức và nhân đa thức vs đa thức vô làm!!
54745764747858857674747568879940457
\(25-x^2+4xy-4y^2=5^2-\left(x-2y\right)^2=\left(5-x+2y\right)\left(5+x-2y\right)\)
\(x^4-4x^3+4x^2=x^2\left(x^2-4x+4\right)=x^2\left(x-2\right)^2\)
\(x^3-x^2-x+1=x^2\left(x-1\right)-\left(x-1\right)=\left(x^2-1\right)\left(x-1\right)=\left(x+1\right)\left(x-1\right)\left(x-1\right)=\left(x+1\right)\left(x-1\right)^2\)
\(a^5+27a^2=a^2\left(a^3+27\right)=a^2\left(a+3\right)\left(a^2-3a+9\right)\)
\(x^3+3x^2-3x-1=\left(x-1\right)\left(x^2+x+1\right)+3x\left(x-1\right)=\left(x-1\right)\left(x^2+x+1+3x\right)=\left(x-1\right)\left(x^2+4x+1\right)\)
\(4a^2b^2-\left(a^2+b^2-1\right)^2=\left(2ab+a^2+b^2-1\right)\left(2ab-a^2-b^2+1\right)=\left[\left(a+b\right)^2-1\right]\left[1-\left(a-b\right)^2\right]\)
\(\left(a+b-1\right)\left(a+b+1\right)\left(1+a-b\right)\left(1-a+b\right)\)
Mình thấy bạn đánh sai đề rồi. Có thể \(x^3+3x^2+3x+1\)
bạn viết thành \(x^3+3x^2+3x-1\)rồi
Nếu như bạn viết đúng thì phân thức này không cần phải rút gọn.
Đúng rồi đấy bạn, hồi chiều đi học thầy nói là thầy viết nhầm, mình cũng thấy lạ giải ko ra nên mới đăng lên.
Cảm ơn bạn nha