Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(5x+x^3\right)\)
\(=\left(x+3\right)\left(x^2-3x+3^2\right)-\left(54+x^3\right)\)
\(=x^3+3^3-\left(54+x^3\right)\)
\(=x^3+27-54-x^3\)
\(=-27\)
b ) \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=\left(2x+y\right)\left[\left(2x\right)^2-2.x.y+y^2\right]-\left(2x-y\right)\left[\left(2x\right)^2+2.x.y+y^2\right]\)
\(=\left[\left(2x\right)^3+y^3\right]-\left[\left(2x\right)^3-y^3\right]\)
\(=\left(2x\right)^3+y^3-\left(2x\right)^3+y^3\)
\(=2y^3\)
a ) (x+3)(x2−3x+9)−(5x+x3)(x+3)(x2−3x+9)−(5x+x3)
=(x+3)(x2−3x+32)−(54+x3)=(x+3)(x2−3x+32)−(54+x3)
=x3+33−(54+x3)=x3+33−(54+x3)
=x3+27−54−x3=x3+27−54−x3
=−27=−27
b ) (2x+y)(4x2−2xy+y2)−(2x−y)(4x2+2xy+y2)(2x+y)(4x2−2xy+y2)−(2x−y)(4x2+2xy+y2)
=(2x+y)[(2x)2−2.x.y+y2]−(2x−y)[(2x)2+2.x.y+y2]=(2x+y)[(2x)2−2.x.y+y2]−(2x−y)[(2x)2+2.x.y+y2]
=[(2x)3+y3]−[(2x)3−y3]=[(2x)3+y3]−[(2x)3−y3]
=(2x)3+y3−(2x)3+y3=(2x)3+y3−(2x)3+y3
=2y3
a. gọi phần đầu đấy là A nhá, để đỡ cần viết lại
A=...............
= (3x+5)2 + ( 3x-5)2 - 9x2 -4
= (9x2 +30x + 25 ) + ( 9x2 -30x+ 25 ) - 9x2 -4
= 9x2 +30x + 25 + 9x2 -30x+25-9x2 -4
= 9x2 + 46
sai thì thôi nhé. bạn nên kiểm tra lại
d. (2x-1)*(4x2 + 2x +1 ) - 8x*( x2 +1) - 5
= 8x3 -1 - 8x3 -8x-5
= -8x-6
= -2(4x+3)
sai nhé. bạn nên kiểm tra lại
Bài 2:
a) \(x^2+y^2-9-2xy\)
\(=\left(x^2-2xy+y^2\right)-3^2\)
\(=\left(x-y\right)^2-3^2\)
\(=\left(x-y-3\right)\left(x-y+3\right)\)
b) \(4x^2-5x-9\)
\(=4x^2+4x-9x-9\)
\(=4x\left(x+1\right)-9\left(x+1\right)\)
\(=\left(x+1\right)\left(4x-9\right)\)
\(\left(2x-3\right)^2-\left(4x-1\right)\left(x+2\right)=4x^2-12x+9-4x^2-7x+2=-19x+11\)
\(\left(3x+2\right)\left(3x-2\right)-\left(3x-1\right)^2=9x^2-4-9x^2+6x-1=6x-5\)
\(x^2+y^2-9-2xy=\left(x-y\right)^2-9=\left(x-y-3\right)\left(x-y+3\right)\)
\(4x^2-5x-9=\left(4x-9\right)\left(x+1\right)\)
\(\left(x-3\right)^2-\left(x-1\right)\left(x-2\right)=5\Leftrightarrow x^2-6x+9-x^2+3x-2=5\)
\(\Leftrightarrow-3x=-2\Leftrightarrow x=x=\frac{2}{3}\)
\(3x^2+5x-8=0\Leftrightarrow\left(x-1\right)\left(3x+8\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{8}{3}\end{cases}}\)
Bài 1:
a: \(=x^2-2xy+y^2-x^2+2xy=y^2\)
b: \(=x^2-2xy+y^2+x^2+2xy-x^2-2xy-y^2\)
\(=x^2-2xy\)
Bài 3:
a: \(\Leftrightarrow x^2-4-7=x^2-2x+1\)
=>-2x+1=-11
=>-2x=-12
hay x=6
b: =>(x-3)(x-3-x-3)=0
=>x-3=0
hay x=3
Trả lời:
a, ( x + y )2 + ( x - y )2 - 2x2 = x2 + 2xy + y2 + x2 - 2xy + y2 - 2x2 = 2y2
b, 2( x - y )( x + y ) + ( x + y )2 + ( x - y )2
= 2( x2 - y2 ) + x2 + 2xy + y2 + x2 - 2xy + y2
= 2x2 - 2y2 + x2 + 2xy + y2 + x2 - 2xy + y2
= 4x2
c, ( x - 3 )( x + 3 ) - ( x - 5 )
= x2 - 9 - x + 5
= x2 - x - 4
d, ( 2x + 1 )2 + 2( 2x + 1 )( 3x - 1 ) + ( 3x - 1 )2
= 4x2 + 4x + 1 + ( 4x + 2 )( 3x - 1 ) + 9x2 - 6x + 1
= 4x2 + 4x + 1 + 12x2 - 4x + 6x - 2 + 9x2 - 6x + 1
= 25x2
e, ( 3x + 5 )2 - 2( 3x + 5 )( 2x + 5 ) + ( 2x + 5 )2
= 9x2 + 30x + 25 + ( - 6x - 10 )( 2x + 5 ) + 4x2 + 20x + 25
= 9x2 + 30x + 25 - 12x2 - 30x - 20x - 50 + 4x2 + 20x + 25
= x2
Bài2: phân tích đa thức thành nhân tử
\(a,x^2-y^2-2x+2y\)
\(=\left(x-y\right)\left(y+x-2\right)\)
\(b,x^3-5x^2+x-5\)
\(=x^2\left(x-5\right)+\left(x-5\right)\)
\(=\left(x+x-5\right)\left(x-x-5\right)\)
\(c,x^2-2xy+y^2-9\)
\(=\left(x^2-y^2\right)-3^2\)
\(=\left(x-y+3\right)\left(x-y-3\right)\)
chúc bạn học tốt !
a) A = (3x - 5)(2x + 11) - (2x + 3)(3x + 7)
A = 6x^2 + 33x - 10x - 55 - 6x^2 - 23x - 21
A = -76
b) B = 4x(3x - 2) - 3x(4x + 1)
B = 12x^2 - 8x - 12x^2 - 3x
B = -11x
c) C = (x + 3)(x - 2) - (x - 1)^2
C = x^2 + x - 6 - x^2 + 2x - 1
C = 3x - 7
\(a.\) \(\frac{x^2+y^2+2xy-1}{x^2-y^2+1+2x}=\frac{\left(x+y\right)^2-1}{\left(x+1\right)^2-y^2}=\frac{\left(x+y-1\right)\left(x+y+1\right)}{\left(x-y+1\right)\left(x+y+1\right)}=\frac{x+y-1}{x-y+1}\)
\(b.\) \(\frac{x^3-3x^2-x+3}{x^2-3x}=\frac{x^2\left(x-3\right)-\left(x-3\right)}{x\left(x-3\right)}=\frac{\left(x-3\right)\left(x^2-1\right)}{x\left(x-3\right)}=\frac{x^2-1}{x}\)