K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2023

Q = \(\dfrac{1+x^4+x^8+...+x^{2020}}{1+x^2+...+x^{2022}}\)

Đặt A = 1 + \(x^4\) + \(x^8\) +...+ \(x^{2020}\)

Đặt B = 1 + \(x^2\) + ...+ \(x^{2022}\)

Thì Q = \(\dfrac{A}{B}\) 

A              = 1 + \(x^4\) + \(x^8\) + ...+ \(x^{2020}\)

A.\(x^4\)         =       \(x^4\) + \(x^8\) +....+ \(x^{2020}\) + \(x^{2024}\)

A.\(x^4\) - A    = \(x^{2024}\) - 1

A              = \(\dfrac{x^{2024}-1}{x^4-1}\) 

B             = 1 + \(x^2\) + \(x^4\) +...+ \(x^{2020}\) + \(x^{2022}\) 

B.\(x^2\)        =       \(x^2\) + \(x^4\) +...+ \(x^{2020}\) + \(x^{2022}\) + \(x^{2024}\)

B\(x^2\) - B   =       \(x^{2024}\) - 1

B             = \(\dfrac{x^{2024}-1}{x^2-1}\)

Q = \(\dfrac{\dfrac{x^{2024}-1}{x^4-1}}{\dfrac{x^{2024}-1}{x^2-1}}\)

Q  = \(\dfrac{x^{2024}-1}{x^4-1}\) \(\times\)\(\dfrac{x^2-1}{x^{2024}-1}\)

Q  = \(\dfrac{1}{x^2+1}\)

 

24 tháng 9 2023

Câu này  cô làm rồi em nhá, em xem phần câu hỏi của tôi ý

23 tháng 7 2017

a, \(\frac{x^{32}+x^{16}+1}{x^{16}+x^8+1}\)

\(=\frac{x^8+x^4+1}{x^4+x^2+1}\) Vậy phân thức \(a=\frac{x^8+x^4+1}{x^4+x^2+1}\)

P/s; Căn thức a, là phân số tối giản 

b, \(\frac{x^8+3x^4+4}{x^4+x^2+2}\)

\(=\frac{x^4+3x^2+2}{x^2+x^1+1}\) Vậy căn thức \(b=\frac{x^4+3x^2+2}{x^2+x^1+1}\)

P/s; Căn thức b, có thể rút gọn được cho 2 và 4

Em ko chắc đâu nhé *-*

\(=\dfrac{\left(x^{10}-x\right)+\left(x^5-x^2\right)+\left(x^2+x+1\right)}{x^8+x^4+1}\)

\(=\dfrac{x\left(x^9-1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)}{x^8+2x^4+1-x^4}\)

\(=\dfrac{x\left(x^3-1\right)\left(x^6+x^3+1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)}{\left(x^4+1\right)^2-x^4}\)

\(=\dfrac{\left(x-1\right)\left(x^2+x+1\right)\left(x^7+x^4+x+x^2\right)+\left(x^2+x+1\right)}{\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)}\)

\(=\dfrac{\left(x^2+x+1\right)\left[\left(x-1\right)\left(x^7+x^2+x^4+x\right)+1\right]}{\left(x^4+2x^2+1-x^2\right)\left(x^4-x^2+1\right)}\)

\(=\dfrac{\left(x-1\right)\left(x^7+x^4+x^2+x\right)+1}{\left(x^2+1-x\right)\left(x^4-x^2+1\right)}\)

14 tháng 1 2016

-x^61+5*x^60+x^59-5*x^58-x^55+5*x^54+x^53-5*x^52-x^49+5*x^48+x^47-5*x^46x^43+5*x^42+x^41-5*x^40-x^37+5*x^36+x^35-5*x^34-x^49+5*x^48+x^47-5*x^46x^43+5*x^42+x^41-5*x^40-x^37+5*x^36+x^35-5*x^34-x^31+5*x^30+x^27-5*x^26-x^25+5*x^24+x^21-5*x^20-x^19+5*x^18+x^15-5*x^14-x^13+5*x^12+x^9-5*x^8-x^7+5*x^6+x^3-5*x^2-x+5

18 tháng 12 2021

\(=\dfrac{1}{x}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+4}+...+\dfrac{1}{x+2020}-\dfrac{1}{x+2022}\)

\(=\dfrac{x+2022-x}{x\left(x+2022\right)}=\dfrac{2022}{x\left(x+2022\right)}\)

19 tháng 12 2021

em cảm ơn vui

\(\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}\)

\(=\frac{x\left(x+1\right)+\left(x+1\right)}{x\left(x-1\right)+2x^2-2x+x+1}\)

\(=\frac{\left(x+1\right)\left(x+1\right)}{x\left(x-1\right)+2\left(x-1\right)+\left(x+1\right)}\)

Ddeeff sao rồi bạn ko rút gọn được

29 tháng 7 2016

\(\frac{x^4+4}{x\left(x^2+2\right)-2x^2-\left(x-1\right)^2-1}\)

\(=\frac{x^4+4}{x^3+2x-2x^2-x^2+2x-1-1}\)

\(=\frac{x^4+4}{x^3-3x^2+4x-2}=\frac{\left(x^2+2x+2\right)\left(x^2-2x+2\right)}{\left(x-1\right)\left(x^2-2x+2\right)}=\frac{x^2+2x+2}{x-1}\)