Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\dfrac{x^3-4x^2+4x}{x^2-4}=\dfrac{x\left(x^2-4x+4\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x-2\right)}{x+2}\)
a) \(\dfrac{6x^2y^2}{8xy^5}=\dfrac{3x}{4y^3}\)
b) \(=\dfrac{2y}{3\left(x+y\right)^2}=\dfrac{2y}{3x^2+6xy+3y^2}\)
c) \(=\dfrac{2x\left(x+1\right)}{x+1}=2x\)
d) \(=\dfrac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}=\dfrac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}=\dfrac{x-y}{x+y}\)
e) \(=\dfrac{36\left(x-2\right)^3}{-16\left(x-2\right)}=-9\left(x-2\right)^2=-9x^2+36x-36\)
B) Ta có: 2x-2y-x2+2xy-y2
⇔ 2(x-y)-(x2-2xy+y2)
⇔ 2(x-y)-(x-y)2
⇔ (x-y)(2-x+y)
Đúng thì tick nhé
\(=\frac{x^2+xy+y^2}{x+y}.\left(\frac{1}{\left(x-y\right)x}-\frac{3y^2}{x\left(x^3-y^3\right)}-\frac{y}{x\left(x^2+xy+y^2\right)}\right)\)
\(=\frac{x^2+xy+y^2}{x+y}.\frac{x^2+xy+y^2-3y^2-xy+y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\frac{x^2-y^2}{x\left(x-y\right)\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)}{x\left(x-y\right)\left(x+y\right)}=\frac{1}{x}\)
Ta có: \(\dfrac{x^2+xy}{x^2+xy+y^2}-\left(\dfrac{x\left(2x^2+xy-y^2\right)}{x^3-y^3}-2+\dfrac{y}{y-x}\right):\dfrac{x-y}{x}-\dfrac{x}{x-y}\)
\(=\dfrac{x^2+xy}{x^2+xy+y^2}-\left(\dfrac{x\left(2x^2+xy-y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{2\left(x^3-y^3\right)-y\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\right):\dfrac{x-y}{x}-\dfrac{x}{x-y}\)
\(=\dfrac{x^2+xy}{x^2+xy+y^2}-\dfrac{2x^3+x^2y-xy^2-2x^3+2y^3-x^2y-xy^2-y^3}{\left(x-y\right)\left(x^2+xy+y^2\right)}:\dfrac{x-y}{x}-\dfrac{x}{x-y}\)
\(=\dfrac{x\left(x+y\right)}{x^2+xy+y^2}-\dfrac{y^3-2xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}:\dfrac{x-y}{x}-\dfrac{x}{x-y}\)
\(=\dfrac{x\left(x+y\right)}{x^2+xy+y^2}+\dfrac{y^2\left(x-y\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\cdot\dfrac{x}{x-y}-\dfrac{x}{x-y}\)
\(=\dfrac{x\left(x+y\right)}{x^2+xy+y^2}+\dfrac{xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{x}{x-y}\)
\(=\dfrac{x\left(x^2-y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{x\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{x^3-xy^2+xy^2-x^3-x^2y-xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{-x^2y-xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\left[\left(\dfrac{-\left(x-y\right)}{x-2y}-\dfrac{x^2+y^2+y-2}{\left(x-2y\right)\left(x+y\right)}\right):\dfrac{\left(2x^2+y\right)^2-4}{x\left(x+y\right)+\left(x+y\right)}\right]:\dfrac{x+1}{2x^2+y+2}\)
\(=\dfrac{-x^2+y^2-x^2-y^2-y+2}{\left(x-2y\right)\left(x+y\right)}\cdot\dfrac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y-2\right)\left(2x^2+y+2\right)}\cdot\dfrac{2x^2+y+2}{x+1}\)
\(=\dfrac{-2x^2-y+2}{\left(x-2y\right)}\cdot\dfrac{\left(x+1\right)}{\left(2x^2+y-2\right)\left(2x^2+y+2\right)}\cdot\dfrac{2x^2+y+2}{x+1}\)
\(=\dfrac{-1}{x-2y}\)
Thay $x=-1,76$ và $y=\dfrac{3}{25}$ vào $P=\dfrac{-1}{x-2y}$, ta được:
$P=\dfrac{-1}{-1,76-2.(\dfrac{3}{25})}=\dfrac{1}{2}$.
\(\dfrac{x^3+xy^2+x}{x^3+y^3+x^2y+xy^2+x+y}=\dfrac{x\left(x^2+y^2+1\right)}{\left(x^3+x^2y\right)+\left(y^3+xy^2\right)+\left(x+y\right)}\)=\(\dfrac{x\left(x^2+y^2+1\right)}{x^2\left(x+y\right)+y^2\left(x+y\right)+\left(x+y\right)}=\dfrac{x\left(x^2+y^2+1\right)}{\left(x+y\right)\left(x^2+y^2+1\right)}\)=\(\dfrac{x}{x+y}\)
sai đề r bạn !!