K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2021

\(\frac{2a^2-5ab-3b^2}{6ab-a^2-9b^2}=\frac{2a^2-6ab+ab-3b^2}{-a^2+3ab+3ab-9b^2}=\frac{2a\left(a-3b\right)+b\left(a-3b\right)}{-a\left(a-3b\right)+3b\left(a-3b\right)}\)

\(=\frac{\left(2a+b\right)\left(a-3b\right)}{\left(a-3b\right)\left(3b-a\right)}=\frac{2a+b}{3b-a}\)

3 tháng 8 2017

\(\left(2a-b-2\right)\left(a+3b+1\right)\)

3 tháng 8 2017

Bạn ơi làm thế nào để ra kết quả đấy thế?

12 tháng 12 2021

\(M=a+\dfrac{4a+2ab+2b+b^2+4a-2ab-2b+b^2-4a}{\left(2-b\right)\left(2+b\right)}\\ M=a+\dfrac{4a+2b^2}{\left(2-b\right)\left(2+b\right)}=\dfrac{4a-ab^2+4a+2b^2}{\left(2-b\right)\left(2+b\right)}\\ M=\dfrac{8a-ab^2+2b^2}{4-b^2}\)

Ta có \(8a-b^2\left(a-2\right)=8a-\dfrac{a^2\left(a-2\right)}{\left(a+1\right)^2}=\dfrac{8a^3+16a^2+8a-a^3+2a^2}{\left(a+1\right)^2}=\dfrac{7a^3+18a^2+8a}{\left(a+1\right)^2}\)

\(4-b^2=4-\dfrac{a^2}{\left(a+1\right)^2}=\dfrac{4a^2+8a+4-a^2}{\left(a+1\right)^2}=\dfrac{3a^2+8a+4}{\left(a+1\right)^2}\)

\(\Leftrightarrow M=\dfrac{7a^3+18a^2+8a}{3a^2+8a+4}=\dfrac{a\left(7a+4\right)\left(a+2\right)}{\left(3a+2\right)\left(a+2\right)}=\dfrac{a\left(7a+4\right)}{3a+2}\)

17 tháng 6 2020

\(M=\frac{2\sqrt{a}\left(\sqrt{a}+\sqrt{2a}-\sqrt{3b}\right)+\sqrt{3b}\left(2\sqrt{a}-\sqrt{3b}\right)-2a\sqrt{a}}{a\sqrt{2}+\sqrt{3ab}}\left(đkxđ:a,b\ge0;mau\ne0\right)\)[tự tìm cái sau :)) ]

\(VP=\frac{2\sqrt{a}\left(\sqrt{a}+\sqrt{2}.\sqrt{a}-\sqrt{3}.\sqrt{b}\right)}{a\sqrt{2}+\sqrt{3ab}}+\frac{\sqrt{3b}\left(2\sqrt{a}-\sqrt{3b}\right)}{a\sqrt{2}+\sqrt{3ab}}-\frac{2a\sqrt{a}}{a\sqrt{2}+\sqrt{3ab}}\)

\(=\frac{2a+2a\sqrt{2}-2\sqrt{3ab}}{a\sqrt{2}+\sqrt{3ab}}+\frac{2\sqrt{3ab}-3b}{a\sqrt{2}+\sqrt{3ab}}-\frac{2a\sqrt{a}}{a\sqrt{2}+\sqrt{3ab}}\)

\(=\frac{2a+2a\sqrt{2}-3b+2a\sqrt{a}}{a\sqrt{2}+\sqrt{3ab}}\)

mình làm được đến đây , bạn làm được tiếp thì làm =))

17 tháng 6 2020

M=\(M=6\sqrt{B\hept{\begin{cases}\\\end{cases}}3,6}\)

\(B=\left(\dfrac{2}{a^2+a}-\dfrac{2}{a+1}\right):\dfrac{1-a}{a^2+2a+1}\)

\(=\left(\dfrac{2}{a\left(a+1\right)}-\dfrac{2a}{a\left(a+1\right)}\right):\dfrac{1-a}{\left(a+1\right)^2}\)

\(=\dfrac{2\left(1-a\right)}{a\left(a+1\right)}\cdot\dfrac{\left(a+1\right)^2}{1-a}\)

\(=\dfrac{2a+2}{a}\)

AH
Akai Haruma
Giáo viên
21 tháng 5 2021

Lời giải:

\(A=\frac{2a^2+4}{(1-a)(1+a)}-\frac{1-\sqrt{a}+1+\sqrt{a}}{(1+\sqrt{a})(1-\sqrt{a})}=\frac{2a^2+4}{(1-a)(1+a)}-\frac{2}{1-a}\)

\(=\frac{2a^2+4}{(1-a)(1+a)}-\frac{2(1+a)}{(1-a)(1+a)}=\frac{2a^2-2a+2}{(1-a)(1+a)}=\frac{2(a^2-a+1)}{1-a^2}\)

22 tháng 5 2021

hình như sai rồi thầy ơi

9 tháng 2 2022

b. \(=\left(\dfrac{2}{a\left(a+1\right)}-\dfrac{2}{a+1}\right):\dfrac{1-a}{a^2+2a+1}\)

\(=\left(\dfrac{2-2a}{a\left(a+1\right)}\right):\dfrac{1-a}{\left(a+1\right)^1}\)

\(=\dfrac{\left(2-2a\right)\left(a+1\right)^2}{a\left(a+1\right)\left(1-a\right)}\)

\(=\dfrac{2\left(1-a\right)\left(a+1\right)^2}{a\left(a+1\right)\left(1-a\right)}=\dfrac{2\left(a+1\right)}{a}\)

9 tháng 2 2022

a.\(=\sqrt{2}.\left(\sqrt{25}-\sqrt{9}\right)=\sqrt{2}.\left(5-3\right)=2\sqrt{2}\)

 

a: Khi x=9 thì A=(9-2)/(3+2)=7/5

b: \(B=\dfrac{x-\sqrt{x}+2\sqrt{x}+2-4}{x-1}=\dfrac{x+\sqrt{x}-2}{x-1}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)

c: P=A*B

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\cdot\dfrac{x-2}{\sqrt{x}+2}=\dfrac{x-2}{\sqrt{x}+1}\)

P=7/4

=>(x-2)/(căn x+1)=7/4

=>4x-8=7căn 7+7

=>4x-7căn x-15=0

=>căn x=3(nhận) hoặc căn x=-5/4(loại)

=>x=9