Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(x-3\right)\left(x^2+1-x^2+1\right)=2\left(x-3\right)\)
1/ \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)\left(x+1\right)\)
\(=\left(x+1\right)^3-\left(x-1\right)^3-3\left[\left(x+1\right)-\left(x-1\right)\right]\left(x+1\right)\left(x-1\right)\)
\(=\left(x+1\right)^3-3\left(x+1\right)^2\left(x-1\right)+3\left(x+1\right)\left(x-1\right)^2-\left(x-1\right)^3\)
\(=\left[\left(x+1\right)-\left(x-1\right)\right]^3=2^3=8\)
2/ \(x\left(x-1\right)\left(x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)
\(=x\left(x^2-1\right)-\left(x^3+1\right)=-x-1\)
a: \(\left(x-2y\right)^2+\left(x-\dfrac{1}{2}y\right)\left(x+\dfrac{1}{2}y\right)\)
\(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2\)
\(=2x^2-4xy+\dfrac{15}{4}y^2\)
b: \(\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)
\(=x^2-4x+4+x^2+6x+9-2\left(x^2-1\right)\)
\(=2x^2+2x+13-2x^2+2\)
=2x+15
a) \(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2=2x^2-4xy+\dfrac{15}{4}y^2\)
b) \(=x^2-4x+4+x^2+6x+9-2x^2+2\)
\(=2x+15\)
Lời giải:
a. Biểu thức này không có khả năng rút gọn. Khai triển ra cũng được nhưng không làm gọn được bạn nhé.
b. $=(2x)^2-3^2-4x^2=4x^2-9-4x^2=-9$
c. $=(3x)^2+2.3x+1^2-(x^2-1)=9x^2+6x+1-x^2+1=8x^2+6x+2$
\(=\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}\)
1/ (x+1)(x+2) +1/ (x+2)(x+3) +1/ (x+3)(x+4) +1/ (x+4)(x+5)
=1/x+1 -1/x+2 +1/x+2 -1/x+3 +1/x+3 -1/x+4 +1/x+4 -1/x+5
=1/x+1 -1/x+5
=4/(x+1)(x+5)
a: \(=2x^3-3x-5x^3-x^2+x^2=-3x^3-3x\)
b: \(=3x^2-6x-5x+5x^2-8x^2+24\)
=-11x+24
\(\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+...+\frac{1}{\left(x-4\right)\left(x-5\right)}\)
\(=\frac{1}{x}-\frac{1}{x-1}+\frac{1}{x-1}-\frac{1}{x-2}+\frac{1}{x-2}-\frac{1}{x-3}+...+\frac{1}{x-4}-\frac{1}{x-5}\)
\(=\frac{1}{x}-\frac{1}{x-5}=\frac{x-5}{x\left(x-5\right)}-\frac{x}{x\left(x-5\right)}=\frac{-5}{x\left(x-5\right)}\)
\(\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+...+\frac{1}{\left(x-4\right)\left(x-5\right)}\)
\(=\frac{1}{x}-\frac{1}{x-1}+\frac{1}{x-1}-\frac{1}{x-2}+...+\frac{1}{x-4}-\frac{1}{x-5}\)
\(=\frac{1}{x}-\frac{1}{x-5}\)
\(=\frac{x-5}{x\left(x-5\right)}-\frac{x}{x\left(x-5\right)}\)
\(=\frac{x-5-x}{x\left(x-5\right)}\)
\(=-\frac{5}{x\left(x-5\right)}\)
`(x+y+1)^3 - (x+y-1)^3 - 6(x+y)^2`
`=(x+y+1-x-y+1)[(x+y+1)^2 + (x+y+1)(x+y-1) + (x+y-1)^2] - 6(x+y)^2`
`=2(x^2+y^2 + 2xy+2x+2y + 1 + x^2 + 2xy +y^2 - 1 + x^2 + y^2 + 1 +2xy - 2x - 2y) - 6(x^2 + 2xy + y^2)`
`=2(3x^2 + 3y^2 + 6xy +1) - 6x^2 - 12xy - 6y^2`
`=6x^2 + 6y^2 + 12xy + 2 - 6x^2 - 12xy - 6y^2`
`=2`
\(\left(x+1\right)^3+\left(x-1\right)^3+x^3-3x\left(x+1\right)\left(x-1\right)\)
\(=x^3+3x^2+3x+1+x^3-3x^2+3x-1+x^3-3x\left(x^2-1\right)\)
\(=3x^3+6x-3x^4+3x\)
\(=-3x^4+3x^3+9x\)
\(x^3+3x^2y+3xy^2+y^3\) \(+x^3-3x^2y+3xy^2-y^3\)\(+x^3-3x\left(x^2-1\right)\)
\(=3x^3+6xy^2-3x^3+3x\)
\(=3x\left(1+2y^2\right)\)
\(\left(x-1\right)\left(x+1\right)-x\left(x+3\right)\)
\(=\left(x^2-1\right)-\left(x^2+3x\right)\)
\(=x^2-1-x^2-3x\)
\(=\left(x^2-x^2\right)-3x-1\)
\(=-3x-1\)
`!`
`(x-1)(x+1)-x(x+3)`
`= x^2+x-x-1-(x^2+3x)`
`= x^2 -1-x^2+3x`
`= 3x-1`