Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, với x > 0 ; x khác 1 ; 4
a, \(P=\left(\dfrac{x+\sqrt{x}-x-2}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}-4}{x-1}\right)\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}:\dfrac{x-4}{x-1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)
b, Ta có P > 0 => \(\sqrt{x}-1>0\Leftrightarrow x>1\)
Kết hợp đk vậy x > 1 ; x khác 4
1) Tại x = 16 thì:
\(A=\frac{2\sqrt{16}+1}{16+\sqrt{16}+1}=\frac{9}{21}=\frac{3}{7}\)
2) Ta có:
\(P=\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}}{1-x}\right)\div\left(\frac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)
\(P=\frac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\div\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}\)
\(P=\frac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)\)
\(P=\frac{2\sqrt{x}+1}{\sqrt{x}+1}\)
3) Ta có: \(M=\frac{P}{A}=\frac{\frac{2\sqrt{x}+1}{\sqrt{x}+1}}{\frac{2\sqrt{x}+1}{x+\sqrt{x}+1}}=\frac{x+\sqrt{x}+1}{\sqrt{x}+1}=\frac{x}{\sqrt{x}+1}+1\ge1\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(x=0\)
Vậy Min(M) = 1 khi x = 0
1/ĐKXĐ: \(x^2+4y+8\ge0\)
PT (1) \(\Leftrightarrow\left(x-2\right)\left(x-y+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=y-3\end{cases}}\)
+) Với x = 2, thay vào PT (2): \(4\sqrt{y^2+4}=y\sqrt{4y+12}\) (\(\text{ĐKXĐ:}y\ge-3\))
\(\Leftrightarrow\hept{\begin{cases}y\ge0\\16\left(y^2+4\right)=y^2\left(4y+12\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ge0\\4\left(y^3-y^2-16\right)=0\end{cases}}\)
\(\Rightarrow y=\frac{1}{3}\left(1+\sqrt[3]{217-12\sqrt{327}}+\sqrt[3]{217+12\sqrt{327}}\right)\)(nghiệm khổng lồ quá chả biết tính kiểu gì nên em nêu đáp án thôi:v)
Vậy...
+) Với x = y - 3, thay vào PT (2):
\(\left(y-1\right)\sqrt{y^2+4}=y\sqrt{y^2-2y+17}\)
\(\Rightarrow\left(y-1\right)^2\left(y^2+4\right)=y^2\left(y^2-2y+17\right)\)(Biến đổi hệ quả nên ta dùng dấu suy ra)
\(\Leftrightarrow4\left(1-3y\right)\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{3}\\y=-1\end{cases}}\)
Thử lại ta thấy chỉ có y = - 1 \(\Rightarrow x=y-3=-4\)
1/HPT\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=6-\left(x+y\right)=3\\\left(x+y\right)^2=9\end{cases}}\Rightarrow2xy=\left(x+y\right)^2-\left(x^2+y^2\right)=9-3=6\Rightarrow xy=3\)
Kết hợp đề bài có được: \(\hept{\begin{cases}x+y=3\\xy=3\end{cases}}\). Dùng hệ thức Viet đảo là xong.
#)Giải :
1.\(\sqrt{m+2\sqrt{m-1}}-\sqrt{m-2\sqrt{m-1}}\)
\(=\sqrt{m-1+2\sqrt{m-1}+1}+\sqrt{m-1-2\sqrt{m-1}+1}\)
\(=\sqrt{\left(\sqrt{m-1}+1\right)^2}+\sqrt{\left(\sqrt{m-1}-1\right)^2}\)
\(=\sqrt{m-1}+1+\sqrt{m-1}-1\)
\(=2\sqrt{m-1}\)