K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2023

Tử số của phân số đầu phải là \(\sqrt{x}+2\) chứ không phải \(\sqrt{x+2}\), vì cái \(\sqrt{x}+2\) nó mới logic để rút gọn: )

\(Q=\left(\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}^3+8}-\dfrac{x-\sqrt{x}}{\sqrt{x}^3+8}\right)\left(\dfrac{5x-10\sqrt{x}+20}{5\sqrt{x}+4}\right)\\ =\left(\dfrac{x+4\sqrt{x}+4-x+\sqrt{x}}{\sqrt{x}^3+8}\right)\left(\dfrac{5x-10\sqrt{x}+20}{5\sqrt{x}+4}\right)\\ =\dfrac{\left(5\sqrt{x}+4\right).5.\left(x-2\sqrt{x}+4\right)}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)\left(5\sqrt{x}+4\right)}\\ =\dfrac{5}{\sqrt{x}+2}\)

4 tháng 7 2023

cảm ơn bạn nha cái tử số kia mình đánh máy nhầm á bucminh

2 tháng 10 2018

\(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}.\)

\(\Rightarrow A^2=4+\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{2}}\right)\left(4-\sqrt{10+2\sqrt{2}}\right)}+4-\sqrt{10+2\sqrt{5}}\)

          \(=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}\)

          \(=8+2\sqrt{6-2\sqrt{5}}\)

          \(=8+2\sqrt{5-2\sqrt{5.1}+1}=8+2\left(\sqrt{5}-1\right)\)

           \(=8+2\sqrt{5}-2=6+2\sqrt{5}\)

          \(=\left(\sqrt{5}+1\right)^2\)

\(\Rightarrow A=\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}+1\)

\(B=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)

    \(=\frac{1-\sqrt{5}}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}+\frac{\sqrt{5}-\sqrt{9}}{\left(\sqrt{5}+\sqrt{9}\right)\left(\sqrt{5}-\sqrt{9}\right)}+...+\frac{\sqrt{2001}-\sqrt{2005}}{\left(\sqrt{2001}+\sqrt{2005}\right)\left(\sqrt{2001}-\sqrt{2005}\right)}\)

\(=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)

\(=-\frac{1}{4}\left(1-\sqrt{5}+\sqrt{5}-\sqrt{9}+....+\sqrt{2001}-\sqrt{2005}\right)\)

\(=-\frac{1}{4}\left(1-\sqrt{2005}\right)\)

\(=10,94430659\)

\(\text{Lm hơi vắn tắt thông cảm nha!!}\)

8 tháng 4 2020

\(A=\frac{\sqrt{10}+2\sqrt{6}+\sqrt{10}.\sqrt{4+\sqrt{15}}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)

\(A=\frac{\sqrt{10}+2\sqrt{6}+\sqrt{40+10\sqrt{15}}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)

\(A=\frac{\sqrt{10}+2\sqrt{6}+\sqrt{\left(5+\sqrt{15}\right)^2}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)

\(A=\frac{\sqrt{4}+\sqrt{6}+\sqrt{10}+\sqrt{6}+\sqrt{9}+\sqrt{15}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)

\(A=\frac{\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)+\sqrt{3}\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)

\(A=\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)

\(A=\sqrt{2}+\sqrt{3}\)

8 tháng 4 2020

A = \(\frac{\sqrt{10}+2\sqrt{6}+5+\sqrt{15}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)

A= \(\frac{\left(\sqrt{2}^2+2\sqrt{2}\sqrt{3}+\sqrt{3}^2\right)+\sqrt{10}+\sqrt{15}}{MC}\)

A= \(\frac{\left(\sqrt{2}+\sqrt{3}\right)^2+\sqrt{5}\left(\sqrt{2}+\sqrt{3}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)

A= \(\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)}\)

A= \(\sqrt{2}+\sqrt{3}\)

cách nào ngắn bạn làm nhé:)) ( cười khinh thk ah t ) 

30 tháng 6 2021

Cho \(B=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

B2 = \(4+\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}+4-\sqrt{10+2\sqrt{5}}\)

\(8+2\sqrt{16-\left(10+2\sqrt{5}\right)}\)

\(8+2\sqrt{6-2\sqrt{5}}\)

\(8+2\sqrt{5-2\sqrt{5}+1}\)

\(8+2\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(8+2.\left(\sqrt{5}-1\right)\) (do \(\sqrt{5}>1\))

\(6+2\sqrt{5}\)

\(5+2\sqrt{5}+1\)

\(\left(\sqrt{5}+1\right)^2\)

=> B = \(\sqrt{5}+1\)

 

30 tháng 6 2021

Đặt \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

\(\Rightarrow A^2=\left(\sqrt{4+\sqrt{10+2\sqrt{5}}}\right)^2+\left(\sqrt{4-\sqrt{10+2\sqrt{5}}}\right)^2+2\sqrt{4+\sqrt{10+2\sqrt{5}}}\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

\(=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)

\(=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}=8+2\sqrt{6-2\sqrt{5}}\)

\(=8+2\sqrt{\left(\sqrt{5}\right)^2-2.\sqrt{5}.1+1^2}=8+2\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(8+2\left|\sqrt{5}-1\right|=8+2\left(\sqrt{5}-1\right)=6+2\sqrt{5}=\left(\sqrt{5}\right)^2+2.\sqrt{5}.1+1^2\)

\(=\left(\sqrt{5}+1\right)^2\Rightarrow A=\sqrt{5}+1\left(A>0\right)\)

25 tháng 10 2021

Đặt \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

\(A^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\\ A^2=8+2\sqrt{16-10-2\sqrt{5}}=8+2\sqrt{6-2\sqrt{5}}\\ A^2=8+2\left(\sqrt{5}-1\right)=6+2\sqrt{5}=\left(\sqrt{5}+1\right)^2\\ A=\sqrt{5}+1\)

8 tháng 8 2021

Đặt \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

\(\Leftrightarrow A^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)

\(\Leftrightarrow A^2=8+2\sqrt{16-10-2\sqrt{5}}\\ \Leftrightarrow A^2=8+2\sqrt{6-2\sqrt{5}}\\ \Leftrightarrow A^2=8+2\left(\sqrt{5}-1\right)\\ \Leftrightarrow A^2=6+2\sqrt{5}=\left(\sqrt{5}+1\right)^2\\ \Leftrightarrow A=\sqrt{5}+1\)

Vậy \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}=\sqrt{5}+1\)