Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(=\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{\left(x+2\right)\left(x+3\right)+\left(x+1\right)\left(x+3\right)+\left(x+2\right)\left(x+1\right)}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)
\(=\dfrac{x^2+5x+6+x^2+4x+3+x^2+3x+2}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)
\(=\dfrac{3x^2+12x+11}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)
Đặt \(\hept{\begin{cases}\left(x+\frac{1}{x}\right)^3=a\\x^3+\frac{1}{x^3}=b\end{cases}}\)
Ta có
\(A=\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+2+\frac{1}{x^6}\right)}{\left(x+\frac{1}{x}\right)^3+x^3+\frac{1}{x^3}}=\frac{\left(x+\frac{1}{x}\right)^6-\left(x^3+\frac{1}{x^3}\right)^2}{\left(x+\frac{1}{x}\right)^3+x^3+\frac{1}{x^3}}\)
\(=\frac{a^2-b^2}{a+b}=a-b\)
\(=\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right)\)
\(=x^3+3\left(x+\frac{1}{x}\right)+\frac{1}{x^3}-\left(x^3+\frac{1}{x^3}\right)=\frac{3x^2+3}{x}\)
B=\(\frac{3\left(2x^8+5x^6+6x^4+5x^2+2\right)}{x\left(x^2+1\right)\left(2x^4+x^2+2\right)}\)
\(C=\left(1-\frac{x}{x+1}\right)\div\left(\frac{x+3}{x-2}+\frac{2+x}{3-x}+\frac{x+2}{x^2-5x+6}\right)\)
ĐKXĐ : x ≠ -1 ; x ≠ 2 ; x ≠ 3 ; x ≠ 11/5
\(=\left(\frac{x+1}{x+1}-\frac{x}{x+1}\right)\div\left(\frac{x+3}{x-2}-\frac{x+2}{x-3}+\frac{x+2}{\left(x-2\right)\left(x-3\right)}\right)\)
\(=\frac{1}{x+1}\div\left(\frac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}-\frac{\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}+\frac{x+2}{\left(x-2\right)\left(x-3\right)}\right)\)
\(=\frac{1}{x+1}\div\left(\frac{x^2-9}{\left(x-2\right)\left(x-3\right)}-\frac{x^2-4}{\left(x-2\right)\left(x-3\right)}+\frac{x+2}{\left(x-2\right)\left(x-3\right)}\right)\)
\(=\frac{1}{x+1}\div\left(\frac{x^2-9-x^2+4+x+2}{\left(x-2\right)\left(x-3\right)}\right)\)
\(=\frac{1}{x+1}\div\frac{x-3}{\left(x-2\right)\left(x-3\right)}\)
\(=\frac{1}{x+1}\times\frac{x-2}{1}\)
\(=\frac{x-2}{x+1}\)
ĐKXĐ bạn bỏ cái x ≠ 11/5 hộ mình nhé ;-;