Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.-\dfrac{8}{12}=\dfrac{-2\cdot4}{4\cdot3}=-\dfrac{2}{3}\)
\(b.\dfrac{15}{-60}=\dfrac{15}{15\cdot-4}-\dfrac{1}{4}\)
\(c.\dfrac{-16}{-72}=\dfrac{-2\cdot8}{-9\cdot8}=\dfrac{2}{9}\)
\(d.\dfrac{35}{14\cdot15}=\dfrac{7\cdot5}{7\cdot2\cdot5\cdot3}=\dfrac{1}{6}\)
\(\dfrac{8}{12}\)=\(\dfrac{2}{31}\)
\(\dfrac{15}{-60}\)=\(\dfrac{-1}{4}\)
\(\dfrac{-16}{72}\)=\(\dfrac{-2}{9}\)
\(\dfrac{35}{14.15}=\dfrac{35}{210}=\dfrac{1}{6}\)
a ) − 18 − 27 = ( − 18 ) : ( − 9 ) ( − 27 ) : ( − 9 ) = 2 3
b ) 45 − 24 = 45 : ( − 3 ) ( − 24 ) : ( − 3 ) = − 15 8
a) 36 − 48 = − 3 4
b) − 15 50 = − 3 10
c) − 18 − 81 = 2 9
d) 145 215 = 29 43
b) \(\dfrac{6\cdot9-2\cdot17}{63\cdot3-119}\)
\(=\dfrac{2\left(3\cdot9-17\right)}{7\cdot\left(3\cdot9-17\right)}\)
\(=\dfrac{2}{7}\)
a) \(\dfrac{{50}}{{85}}\)
Ta có: \(50 =2.5^2; 85= 5.17\)
Thừa số nguyên tố chung là 5 với số mũ nhỏ nhất là 1 nên ƯCLN(50, 85) = 5. Do đó, \(\dfrac{{50}}{{85}}\) chưa là phân số tối giản
Ta có: \(\dfrac{{50}}{{85}} = \dfrac{{50:5}}{{85:5}} = \dfrac{{10}}{{17}}\)
b)\(\dfrac{{23}}{{81}}\)
Ta có: \(23 = 23; 81 = 3^4\)
Chúng không có thừa số nguyên tố chung nên ƯCLN(23, 81) = 1. Do đó, \(\dfrac{{23}}{{81}}\) là phân số tối giản.
\(\frac{2^{10}\cdot3^{10}-2^{10}\cdot3^9}{2^9\cdot3^{10}}=\frac{2^{10}\cdot\left[3^9\left(3-1\right)\right]}{2^9\cdot3^{10}}\)
\(=\frac{2^{10}\cdot3^9\cdot2}{2^9\cdot3^{10}}=\frac{2^2}{3}=\frac{4}{3}\)
\(\frac{68\cdot15-18}{50+68\cdot14}=\frac{68\cdot\left(14+1\right)-18}{50+68\cdot14}\)
\(=\frac{68\cdot14+68-18}{50+68\cdot14}=\frac{68\cdot14+50}{50+68\cdot14}=1\)
Thank you. Mình cx đang nghĩ z