Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{x-2}+\frac{1}{x-2}+\frac{x^2+1}{x^2-4}\)
a)\(A=\frac{1}{x-2}+\frac{1}{x-2}+\frac{x^2+1}{x^2-4}\)
\(=\frac{x-2+x-2}{x^2-4}+\frac{x^2+1}{x^2-4}\)
\(=\frac{x^2+2x-3}{x^2-4}\)
đầu bài sai rồi bạn ơi bạn cho x=0 thì \(A=\frac{3}{4}\)là số dương rồi
A = (2x - 1)(x + 2) - 3x² + (x - 1)²
= 2x² + 4x - x - 2 - 3x² + x² - 2x + 1
= (2x² - 3x² + x²) + (4x - x - 2x) + (-2 + 1)
= x - 1
B = (x - 2)(x² + 2x + 4) - (x³ + x²) - (3 - x)(3 + x)
= x³ - 8 - x³ - x² - 9 + x²
= (x³ - x³) + (-x² + x²) + (-8 - 9)
= -17
A = (2x - 1)(x + 2) - 3x² + (x - 1)²
= 2x² + 4x - x - 2 - 3x² + x² - 2x + 1
= (2x² - 3x² + x²) + (4x - x - 2x) + (-2 + 1)
= x - 1
B = (x - 2)(x² + 2x + 4) - (x³ + x²) - (3 - x)(3 + x)
= x³ - 8 - x³ - x² - 9 + x²
= (x³ - x³) + (-x² + x²) + (-8 - 9)
= -17
kết quả đây
chúc bạn học tốt
\(2;A=\left(\frac{x}{x^2-4}+\frac{1}{x+2}-\frac{2}{x-2}\right):\left(\frac{1-x}{x+2}\right)\)
\(ĐKXĐ:\hept{\begin{cases}x^2-4\ne0\\1-x\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x\ne\pm2\\x\ne1\end{cases}}\)
\(a,A=\left(\frac{x}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x+2\right)\left(x-2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{x+2}{1-x}\)
\(A=\left(\frac{x+x-2-2x-4}{\left(x+2\right)\left(x-2\right)}\right).\frac{x+2}{1-x}\)
\(A=\frac{-6}{\left(x+2\right)\left(x-2\right)}.\frac{x+2}{1-x}=\frac{-6}{\left(x-2\right)\left(1-x\right)}\)
b, Khi x = -4
\(A=\frac{-6}{\left(-4-2\right)\left(1+4\right)}=\frac{-6}{-6.5}=\frac{1}{5}\)
\(Q=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{x^2+y^2}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+2x^2+2y^2}{2\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{2x^2+2y^2+4xy}{2\left(x-y\right)\left(x+y\right)}=\dfrac{2\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)}=\dfrac{x+y}{x-y}\)
Bài 1:
\(P=2a^2-2b^2-a^2+2ab-b^2+a^2+2ab+b^2+b^2=2a^2-b^2+4ab\\ Q=\left(2x+3\right)^2+\left(2x-3\right)^2-2\left(2x-3\right)\left(2x+3\right)\\ Q=\left(2x+3-2x+3\right)^2=9^2=81\)
Bài 2:
\(Sửa:A=x^2+2xy+y^2-4x-4y+2=\left(x+y\right)^2-4\left(x+y\right)+4-2\\ A=\left(x+y-2\right)^2-2=\left(3-2\right)^2-2=1-2=-1\)
a) \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(A=y\left(x^4-y^4\right)-y\left(y^4-y^4\right)=0\)
=> đpcm
b) \(B=\left(\frac{1}{3}+2x\right)\left(4x^2+\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\) (đã sửa đề)
\(B=\left(\frac{1}{27}+8x^3\right)-\left(8x^3-\frac{1}{27}\right)\)
\(B=\frac{2}{27}\)
=> đpcm
c) \(C=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\) (đã sửa đề)
\(C=x^3-3x^2+3x-1-x^3+1+3x^2-3x\)
\(C=0\)
=> đpcm
\(A=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(=x^3-8-x^3-3x^2-3x-1+3x^2-3\)
\(=-3x-11\)