Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(2x+1\right)^2+2\left(2x+1\right)+1\)
\(=\left(2x+1\right)^2+2\cdot\left(2x+1\right)\cdot1+1^2\)
\(=\left[\left(2x+1\right)+1\right]^2\)
\(=\left(2x+2\right)^2\)
b) \(\left(x-y\right)^2+\left(x+y\right)^2-2\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)^2-2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left[\left(x-y\right)-\left(x+y\right)\right]^2\)
\(=\left(x-y-x-y\right)^2\)
\(=\left(-2y\right)^2\)
\(=4y^2\)
Đk: x, y \(\ne\)0
Ta có: P = \(\frac{2}{x}-\left(\frac{x^2}{x^2+xy}+\frac{y^2-x^2}{xy}-\frac{y^2}{xy+y^2}\right)\cdot\frac{x+y}{x^2+xy+y^2}\)
P = \(\frac{2}{x}-\left(\frac{x^3+\left(y^2-x^2\right)\left(x+y\right)-y^3}{xy\left(x+y\right)}\right)\cdot\frac{x+y}{x^2+xy+y^2}\)
P = \(\frac{2}{x}-\frac{\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x-y\right)\left(x+y\right)^2}{xy\left(x+y\right)}\cdot\frac{x+y}{x^2+xy+y^2}\)
P = \(\frac{2}{x}-\frac{\left(x-y\right)\left(x^2+xy+y^2-x^2-2xy-y^2\right)}{xy\left(x^2+xy+y^2\right)}\)
P = \(\frac{2}{x}-\frac{-xy\left(x-y\right)}{xy\left(x^2+xy+y^2\right)}=\frac{2}{x}+\frac{x-y}{x^2+xy+y^2}=\frac{2x^2+2xy+2y^2+x^2-xy}{x\left(x^2+xy+y^2\right)}\)
P = \(\frac{3x^2+xy+2y^2}{x\left(x^2+xy+y^2\right)}\)
b) Ta có: x2 + y2 + 10 = 2x - 6y
<=> x2 - 2x + 1 + y2 + 6y + 9 = 0
<=> (x - 1)2 + (y + 3)2 = 0
<=> \(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
Do đó: P = \(\frac{3.1^2-3.1+2.\left(-3\right)^2}{1\left(1^2-3+\left(-3\right)^2\right)}=\frac{18}{7}\)
\(x^2+2x+y^2-6y-10=0\)
\(x^2+2x+1+y^2-6x+9=10\)
\(\left(x+1\right)^2+\left(y-3\right)^2=0\)
\(\left(x+1\right)^2=\left(y-3\right)^2=0\)
\(x+1=y-3=0\)
Vậy \(x=-1;y=3\)
\(x^2\)\(+2x+y^2\)\(-6y-10=0\)
\(x^2\)\(+2x+1+y^2\)\(-6x+9=10\)
\(\left(x+1\right)^2\)+\(\left(y-3\right)^2\)\(=0\)
\(\left(x+1\right)^2\)\(=\left(y-3\right)^2\)\(=0\)
\(x+1=y-3=0\)
Vậy: \(x=-1;y=3\)
1) Ta có: \(\left(x+2\right)^2+\left(x-3\right)^2\)
\(=x^2+4x+4+x^2-6x+9\)
\(=2x^2-2x+13\)
2) Ta có: \(\left(4-x\right)^2-\left(x-3\right)^2\)
\(=\left(4-x-x+3\right)\left(4-x+x-3\right)\)
\(=-2x+7\)
3) Ta có: \(\left(x-5\right)\left(x+5\right)-\left(x+5\right)^2\)
\(=x^2-25-x^2-10x-25\)
=-10x-50
4) Ta có: \(\left(x-3\right)^2-\left(x-4\right)\left(x+4\right)\)
\(=x^2-6x+9-x^2+16\)
=-6x+25
5) Ta có: \(\left(y^2-6y+9\right)-\left(y-3\right)^2\)
\(=y^2-6y+9-y^2+6y-9\)
=0
6) Ta có: \(\left(2x+3\right)^2-\left(2x-3\right)\left(2x+3\right)\)
\(=4x^2+12x+9-4x^2+9\)
=12x+18
`@` `\text {Ans}`
`\downarrow`
`(2x - 3)^2 - (2x + 3)^2`
`= 4x^2 - 12x + 9 - (4x^2 + 12x + 9)`
`= 4x^2 - 12x + 9 - 4x^2 - 12x - 9`
`= (4x^2 - 4x^2) + (-12x - 12x) + (9-9)`
`= -24x`
____
`@` CT:
`(A + B)^2 = A^2 + 2AB + B^2`
`(A - B)^2 = A^2 - 2AB + B^2`
\(\left(2x-3\right)^2-\left(2x+3\right)^2\)
\(=\left[\left(2x-3\right)+\left(2x+3\right)\right]\left[\left(2x-3\right)-\left(2x+3\right)\right]\)
\(=\left(2x-3+2x+3\right)\left(2x-3-2x-3\right)\)
\(=4x\cdot-6\)
\(=-24x\)
\(x^3-5x=0\Rightarrow x\left(x^2-5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x^2=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{5}\end{matrix}\right.\)
Ta có: \(x^3-5x=0\)
\(\Leftrightarrow x\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{5}\\x=-\sqrt{5}\end{matrix}\right.\)
cái này là hằng đẳng thức đấy bn ạ