K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2018

Xét biểu thức tổng quát:Bài tập tổng hợp chương 2 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Khi đó ta có: Bài tập tổng hợp chương 2 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập tổng hợp chương 2 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập tổng hợp chương 2 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

VậyBài tập tổng hợp chương 2 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

7 tháng 12 2017

N= \(\dfrac{x^2+3x-4}{x^2+10x+25}\)

N=\(\dfrac{x^2-x+4x-4}{\left(x+5\right)^2}\)

N=\(\dfrac{x\left(x-1\right)+4\left(x-1\right)}{\left(x+5\right)^2}\)

N=\(\dfrac{\left(x-1\right)\left(x+4\right)}{\left(x+5\right)^2}\)

Thay x= -18 vào N, ta có:

N=\(\dfrac{\left[\left(-18\right)-1\right]\left[\left(-18\right)+4\right]}{\left[\left(-18\right)+5\right]^2}\)

N= \(\dfrac{266}{169}\)

7 tháng 12 2017

N=\(\dfrac{x^2-1x+4x-4}{x^2+5x+5x+25}\)

\(N=\dfrac{\left(x^2-1x\right)+\left(4x-4\right)}{\left(x^2+5x\right)+\left(5x+25\right)}\)

\(N=\dfrac{x\left(x-1\right)+4\left(x-1\right)}{x\left(x+5\right)+5\left(x+5\right)}\)

\(N=\dfrac{\left(x+4\right)\left(x-1\right)}{\left(x+5\right)\left(x+5\right)}\)

\(N=\dfrac{\left(x+4\right)\left(x-1\right)}{\left(x+5\right)^2}\)

12 tháng 3 2021

\(P=\frac{n^3+2n^2-1}{n^3+2n^2+2n+1}\)

ĐKXĐ : \(n\ne-1\)

\(=\frac{n^3+n^2+n^2+n-n-1}{n^3+2n^2+2n+1}=\frac{n^2\left(n+1\right)+n\left(n+1\right)-\left(n+1\right)}{\left(n^3+1\right)+2n\left(n+1\right)}\)

\(=\frac{\left(n+1\right)\left(n^2+n-1\right)}{\left(n+1\right)\left(n^2-n+1\right)+2n\left(n+1\right)}=\frac{\left(n+1\right)\left(n^2+n-1\right)}{\left(n+1\right)\left(n^2+n+1\right)}=\frac{n^2+n-1}{n^2+n+1}\)

Với n nguyên, đặt ƯC( n2 + n - 1 ; n2 + n + 1 ) = d

=> n2 + n - 1 ⋮ d và n2 + n + 1 ⋮ d

=> ( n2 + n + 1 ) - ( n2 + n - 1 ) ⋮ d

=> n2 + n + 1 - n2 - n + 1 ⋮ d

=> 2 ⋮ d => d = 1 hoặc d = 2

Dễ thấy n2 + n + 1 ⋮/ 2 ∀ n ∈ Z ( bạn tự chứng minh )

=> loại d = 2

=> d = 1

=> ƯCLN( n2 + n - 1 ; n2 + n + 1 ) = 1

hay P tối giản ( đpcm )

Bài 1: 

a: Ta có: \(A=\left(k-4\right)\left(k^2+4k+16\right)-\left(k^3+128\right)\)

\(=k^3-64-k^3-128\)

=-192

b: Ta có: \(B=\left(2m+3n\right)\left(4m^2-6mn+9n^2\right)-\left(3m-2n\right)\left(9m^2+6mn+4n^2\right)\)

\(=8m^3+27n^3-27m^3+8n^3\)

\(=-19m^3+35n^3\)

Bài 4: 

a: Ta có: \(\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=16\)

\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=16\)

\(\Leftrightarrow9x=9\)

hay x=1

b: ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)

\(\Leftrightarrow x^3+8-x^3+2x=15\)

\(\Leftrightarrow2x=7\)

hay \(x=\dfrac{7}{2}\)