K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2020

Ta có : \(B=\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1+\frac{a-\sqrt{a}}{1-\sqrt{a}}\right)\)

                  \(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right).\left(1+\frac{\sqrt{a}\left(\sqrt{-1}+\sqrt{a}\right)}{1-\sqrt{a}}\right)\)

                 \(=\left(1+\sqrt{a}\right).\left(1-\sqrt{a}\right)\)

                   = \(1-a\)

Vậy B = 1-a

1 tháng 8 2019

\(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\)

\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a-\sqrt{a}\right)\left(a\sqrt{a}+1\right)}{\left(a-\sqrt{a}\right)\left(a+\sqrt{a}\right)}\)

\(=\frac{a^2\cdot\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}+a-a^2-\sqrt{a}\right)}{a^2-a}\)

\(=\frac{2a^2-2a}{a^2-a}\)

\(=2\)( 1 )

\(\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)

\(=\left(\frac{\sqrt{a}}{1}-\frac{1}{\sqrt{a}}\right)\left(\frac{\left(\sqrt{a}+1\right)^2+\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\left(\frac{a-1}{\sqrt{a}}\right)\left(\frac{a+2\sqrt{a}+1+a-2\sqrt{a}+1}{a-1}\right)\)

\(=\frac{a-1}{\sqrt{a}}\cdot\frac{2\left(a+1\right)}{a-1}\)

\(=\frac{2\left(a+1\right)}{\sqrt{a}}\) ( 2 )

Cộng ( 1 ) và ( 2 ) lại thì ta được biểu thức ban đầu:

\(2+\frac{2\left(a+1\right)}{\sqrt{a}}\)

Câu b,c em chịu:((

P/S:e ko bt đúng hay sai đâu ạ

1 tháng 8 2019

Mk giải nốt phần còn lại nha

sai thì thông cảm

\(2+\frac{2\left(a+1\right)}{\sqrt{a}}=7\Leftrightarrow2a+2=5\sqrt{a}\)

\(\Leftrightarrow2a-5\sqrt{a}+2=0\)

\(\Leftrightarrow\left(2\sqrt{a}-1\right)\left(\sqrt{a}-2\right)=0\Rightarrow\orbr{\begin{cases}a=\frac{1}{4}\\a=4\end{cases}}\)

\(2+\frac{2\left(a+1\right)}{\sqrt{a}}>6\)\(\Rightarrow2a+2>4\sqrt{a}\Rightarrow2\left(a+1-2\sqrt{a}\right)>0\)

\(\Leftrightarrow\left(a+1-2\sqrt{a}\right)>0\Leftrightarrow\left(\sqrt{a}-1\right)^2>0\)

\(\Leftrightarrow a\ne1;a\ge0\)

10 tháng 8 2019

Em kiểm tra lại đề bài nhé!

2 tháng 8 2017

Điều kiện : a> 0 ; a khác 1

\(A=\frac{\left(\sqrt{a}\right)^3-1}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}\right)^3+1}{\sqrt{a}\left(\sqrt{a}+1\right)}+\left(\frac{a-1}{\sqrt{a}}\right)\left(\frac{\left(\sqrt{a}+1\right)^2+\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(A=\frac{a+\sqrt{a}+1}{\sqrt{a}}-\frac{a-\sqrt{a}+1}{\sqrt{a}}+\left(\frac{a-1}{\sqrt{a}}\right)\left(\frac{2a+2}{a-1}\right)\)

\(A=\frac{2\sqrt{a}}{\sqrt{a}}+\frac{2\left(a+1\right)}{\sqrt{a}}=2+\frac{2\sqrt{a}\left(a+1\right)}{a}\)

13 tháng 5 2021

1,

\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)

\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)

\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)

\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)

Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)

14 tháng 5 2021

2, 

a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)

b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)

\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)

\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)

c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)

1 tháng 8 2019

\(đkxđ\Leftrightarrow\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)

\(A=\)\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\)\(\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

\(=\left(\frac{\sqrt{a}.\sqrt{a}}{2\sqrt{a}}-\frac{1}{2\sqrt{a}}\right)^2\)\(\left(\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(=\left(\frac{a-1}{2\sqrt{a}}\right)^2\left(\frac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\frac{\left(a-1\right)^2}{\left(2\sqrt{a}\right)^2}\left(\frac{a-2\sqrt{a}+1-a-2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(=\frac{\left(a-1\right)^2.-4\sqrt{a}}{4a\left(a-1\right)}=\frac{a-1}{\sqrt{a}}\)

\(b,A< 0\Rightarrow\frac{a-1}{\sqrt{a}}< 0\)

Mà \(\sqrt{a}\ge0\Rightarrow a-1\le0\Rightarrow a\le1\)

\(A=2\Rightarrow\frac{a-1}{\sqrt{a}}=2\)

\(\Rightarrow a-1=2\sqrt{a}\Rightarrow a-2\sqrt{a}-1=0\)

\(\Rightarrow a-2\sqrt{a}+1-2=0\)

\(\Rightarrow\left(\sqrt{a}-1\right)^2-\sqrt{2}^2=0\)

\(\Rightarrow\left(\sqrt{a}-1-\sqrt{2}\right)\left(\sqrt{a}-1+\sqrt{2}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{a}=1+\sqrt{2}\\\sqrt{a}=1-\sqrt{2}\end{cases}\Rightarrow\orbr{\begin{cases}a=\left(1+\sqrt{2}\right)^2=3+2\sqrt{2}\\a=\left(1-\sqrt{2}\right)^2=3-2\sqrt{2}\end{cases}}}\)

1 tháng 8 2019

\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

\(=\left(\frac{a-1}{2\sqrt{a}}\right)^2\left(\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(=\frac{\left(a-1\right)^2}{4a}.\frac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{\left(a-1\right)^2}{4a}.\frac{\left(\sqrt{a}-1+\sqrt{a}+1\right)\left(\sqrt{a}-1-\sqrt{a}-1\right)}{a-1}\)

\(=\frac{a-1}{4a}.\frac{2\sqrt{a}.\left(-2\right)}{1}\)

\(=\frac{a-1}{4a}.\frac{-4\sqrt{a}.}{1}\)

\(=\frac{1-a}{\sqrt{a}}\)