K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2021

\(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}=4\sqrt{b}+2.2\sqrt{10b}-3.3\sqrt{10b}=4\sqrt{b}+4\sqrt{10b}-9\sqrt{10b}=4\sqrt{b}-5\sqrt{10b}\)

30 tháng 11 2021

Có mấy câu nữa trả lời giúp em ạ

23 tháng 4 2017

ĐS: a) 3√5;35;

b) 9√22;922;

c) 15√2−√5;152−5;

d) 17√25.


19 tháng 6 2017

a) \(\sqrt{75}+\sqrt{48}-\sqrt{300}\) = \(5\sqrt{3}+4\sqrt{3}-10\sqrt{3}\) = \(-\sqrt{3}\)

b) \(\sqrt{98}-\sqrt{72}+0,5\sqrt{8}\) = \(7\sqrt{2}-6\sqrt{2}+\sqrt{2}\) = \(2\sqrt{2}\)

c) \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) = \(3\sqrt{a}-4\sqrt{a}+7\sqrt{a}\) = \(6\sqrt{a}\)

d) \(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\) = \(4\sqrt{b}+4\sqrt{10b}-9\sqrt{10b}\)

= \(4\sqrt{b}-5\sqrt{10b}\)

21 tháng 7 2023

4) \(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\)

\(=\sqrt{4^2\cdot b}+2\sqrt{2^2\cdot10b}-3\sqrt{3^2\cdot10b}\)

\(=4\sqrt{b}+2\cdot2\sqrt{10b}-3\cdot3\sqrt{10b}\)

\(=4\sqrt{b}+4\sqrt{10b}-9\sqrt{10b}\)

\(=4\sqrt{b}+\left(4\sqrt{10b}-9\sqrt{10b}\right)\)

\(=4\sqrt{b}-5\sqrt{10b}\)

`a, sqrt(16b) + 2 sqrt(40b) - 3 sqrt(90b)`

`= 4sqrtb + 2sqrt(8.5b) - 3 sqrt(9.10b)`

`= 4 sqrt b + 4sqrt(10b) - 9 sqrt(10b)`

`= 4sqrtb-5sqrt(10b)`.

20 tháng 7 2023

2) \(\sqrt{98}-\sqrt{72}+0,5\sqrt{8}\)

\(=7\sqrt{2}-6\sqrt{2}+\sqrt{2}\)

\(=\left(7-6+1\right)\sqrt{2}\)

\(=2\sqrt{2}\)

3) \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\)

\(=3\sqrt{a}-4\sqrt{a}+7\sqrt{a}\)

\(=\left(3-4+7\right)\sqrt{a}\)

\(=6\sqrt{a}\)

4) \(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\)

\(=4\sqrt{b}+4\sqrt{10b}-9\sqrt{10b}\)

\(=4\sqrt{b}-5\sqrt{10b}\)

20 tháng 7 2023

Gấp nha 

6 tháng 12 2023

a) \(B=\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{x\sqrt{x}-y\sqrt{y}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\left(x,y\ge0;x\ne y\right)\)

\(B=\left[\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}-\dfrac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{x-y}\right]:\dfrac{x-2\sqrt{xy}+y+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

\(B=\left[\left(\sqrt{x}+\sqrt{y}\right)-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right]:\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)

\(B=\left[\left(\sqrt{x}+\sqrt{y}\right)-\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right]:\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)

\(B=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x+\sqrt{xy}+y}\)

\(B=\dfrac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x+\sqrt{xy}+y}\)

\(B=\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x+\sqrt{xy}+y}\)

\(B=\dfrac{\sqrt{xy}}{x+\sqrt{xy}+y}\)

b) Xét tử: 

\(\sqrt{xy}\ge0\forall x,y\) (xác định) (1) 

Xét mẫu: 

\(x+\sqrt{xy}+y\)

\(=\left(\sqrt{x}\right)^2+2\cdot\dfrac{1}{2}\sqrt{y}\cdot\sqrt{x}+\left(\dfrac{1}{2}\sqrt{y}\right)^2+\dfrac{3}{4}y\)

\(=\left(\sqrt{x}+\dfrac{1}{2}\sqrt{y}\right)^2+\dfrac{3}{4}y\)

Mà: \(\left(\sqrt{x}+\dfrac{1}{2}\sqrt{y}\right)^2\ge0\forall x,y\) (xác định), còn: \(\dfrac{3}{4}y\ge0\) vì theo đkxđ thì \(y\ge0\) (2) 

Từ (1) và (2) ⇒ B luôn không âm với mọi x,y (\(B\ge0\)) (đpcm) 

a: \(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{5}+1-\sqrt{5}+1\)

=2

c: \(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}=\sqrt{x}+\sqrt{y}\)

d: \(\dfrac{y-2\sqrt{y}+1}{\sqrt{y}-1}=\sqrt{y}-1\)