K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2021

\(\sqrt{9-4\sqrt{5}}-\sqrt{5}\)

\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}\)

\(=\sqrt{5}-2-\sqrt{5}=-2\)

17 tháng 7 2023

1) \(\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{2^2+2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}-\sqrt{2^2-2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}\)

\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)

\(=\left|2+\sqrt{5}\right|-\left|2-\sqrt{5}\right|\)

\(=2+\sqrt{5}+2-\sqrt{5}\)

\(=4\)

2) \(\sqrt{12-6\sqrt{3}}+\sqrt{12+6\sqrt{3}}\)

\(=\sqrt{3^2-2\cdot3\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}+\sqrt{3^2+2\cdot3\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{\left(3-\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{3}\right)^2}\)

\(=\left|3-\sqrt{3}\right|+\left|3+\sqrt{3}\right|\)

\(=3-\sqrt{3}+3+\sqrt{3}\)

\(=6\)

25 tháng 8 2021

\(\dfrac{\sqrt{9-4\sqrt{5}}}{2-\sqrt{5}}=\dfrac{\sqrt{\left(\sqrt{5}-2\right)^2}}{2-\sqrt{5}}=\dfrac{\sqrt{5}-2}{2-\sqrt{5}}=\dfrac{-\left(2-\sqrt{5}\right)}{2-\sqrt{5}}=-1\)

\(\dfrac{\sqrt{9-4\sqrt{5}}}{2-\sqrt{5}}=-1\)

14 tháng 5 2022

a.\(\sqrt{7+4\sqrt{3}}=\sqrt{\left(\sqrt{3}+2\right)^2}=\left|\sqrt{3}+2\right|=\sqrt{3}+2\)

b.\(\sqrt{9-4\sqrt{5}}=\sqrt{\left(\sqrt{5}-2\right)^2}=\left|\sqrt{5}-2\right|=\sqrt{5}-2\)

c.\(\sqrt{14+6\sqrt{5}}=\sqrt{\left(\sqrt{5}+3\right)^2}=\left|\sqrt{5}+3\right|=\sqrt{5}+3\)

d.\(\sqrt{17-12\sqrt{2}}=\sqrt{\left(2\sqrt{2}-3\right)^2}=\left|2\sqrt{2}-3\right|=3-2\sqrt{2}\)

12 tháng 6 2023

\(\sqrt{9-3\sqrt{8}}-\dfrac{\sqrt{3}-1}{\sqrt{2}}+\sqrt{5-2\sqrt{6}}-\sqrt{2-\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{6}\right)^2-2.\sqrt{6}.\sqrt{3}+\left(\sqrt{3}\right)^2}-\dfrac{\sqrt{6}-\sqrt{2}}{2}+\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2}-\dfrac{\sqrt{6}-\sqrt{2}}{2}\)

\(=\sqrt{\left(\sqrt{6}-\sqrt{3}\right)^2}-\sqrt{6}+\sqrt{2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)

\(=\left|\sqrt{6}-\sqrt{3}\right|-\sqrt{6}+\sqrt{2}+\left|\sqrt{3}-\sqrt{2}\right|\)

\(=\sqrt{6}-\sqrt{3}-\sqrt{6}+\sqrt{2}+\sqrt{3}-\sqrt{2}\) (do \(\sqrt{6}-\sqrt{3}>0;\sqrt{3}-\sqrt{2}>0\))

\(=0\)

\(=\sqrt{9-6\sqrt{2}}-\dfrac{\sqrt{6}-\sqrt{2}}{2}+\sqrt{3}-\sqrt{2}-\dfrac{1}{\sqrt{2}}\left(\sqrt{3}-1\right)\)

\(=\sqrt{6}-\sqrt{3}-\dfrac{1}{2}\sqrt{6}+\dfrac{1}{2}\sqrt{2}+\sqrt{3}-\sqrt{2}-\dfrac{1}{2}\sqrt{6}+\dfrac{1}{2}\sqrt{2}\)

\(=0\)

a) Ta có: \(A^3=\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)^3\)

\(=2+\sqrt{5}+2-\sqrt{5}+3\cdot\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)

\(=4-3\cdot A\)

\(\Leftrightarrow A^3+3A-4=0\)

\(\Leftrightarrow A^3-A+4A-4=0\)

\(\Leftrightarrow A\left(A-1\right)\left(A+1\right)+4\left(A-1\right)=0\)

\(\Leftrightarrow\left(A-1\right)\left(A^2+A+4\right)=0\)

\(\Leftrightarrow A=1\)

AH
Akai Haruma
Giáo viên
26 tháng 8 2023

Lời giải:
a.

\(=\sqrt{5+2.2\sqrt{5}+2^2}-\sqrt{5-2.2\sqrt{5}+2^2}\)

$=\sqrt{(\sqrt{5}+2)^2}-\sqrt{(\sqrt{5}-2)^2}$

$=|\sqrt{5}+2|-|\sqrt{5}-2|=(\sqrt{5}+2)-(\sqrt{5}-2)=4$

b.

$=\sqrt{3-2.3\sqrt{3}+3^2}+\sqrt{3+2.3.\sqrt{3}+3^2}$

$=\sqrt{(\sqrt{3}-3)^2}+\sqrt{(\sqrt{3}+3)^2}$

$=|\sqrt{3}-3|+|\sqrt{3}+3|$

$=(3-\sqrt{3})+(\sqrt{3}+3)=6$

c.

$=\sqrt{2+2.3\sqrt{2}+3^2}-\sqrt{2-2.3\sqrt{2}+3^2}$

$=\sqrt{(\sqrt{2}+3)^2}-\sqrt{(\sqrt{2}-3)^2}$
$=|\sqrt{2}+3|-|\sqrt{2}-3|$

$=(\sqrt{2}+3)-(3-\sqrt{2})=2\sqrt{2}$

Bài 2: 

\(x=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)

Ta có: \(P=x^2-2x+2020\)

\(=4+2\sqrt{3}-2\left(\sqrt{3}-1\right)+2020\)

\(=4+2\sqrt{3}-2\sqrt{3}+2+2020\)

=2026

Bài 1: 

\(A=-\dfrac{3}{4}\cdot\sqrt{9-4\sqrt{5}}\cdot\sqrt{\left(-8\right)^2\cdot\left(2+\sqrt{5}\right)^2}\)

\(=\dfrac{-3}{4}\cdot8\cdot\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)\)

=-6

1 tháng 10 2021

\(\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5+2\sqrt{6}}\)

\(=\sqrt{15+2.3.\sqrt{6}}\)\(-\sqrt{10+2.2\sqrt{6}}\)

\(=\sqrt{9+2.3\sqrt{6}+6}\)\(-\sqrt{6+2.\sqrt{6}.2+4}\)

\(=\sqrt{\left(3+\sqrt{6}\right)^2}\)\(-\sqrt{\left(\sqrt{6}+2\right)^2}\)

\(=3+\sqrt{6}\)\(-2\)\(-\sqrt{6}=\left(3-2\right)+\left(\sqrt{6}-\sqrt{6}\right)\)

\(=1+0=1\)

2 tháng 10 2021

a)  \((\sqrt{3}-\sqrt{2}).\sqrt{(\sqrt{3}+\sqrt{2})^2}\)

\(\left(\sqrt{3}-\sqrt{2}\right).\left(\sqrt{3}+\sqrt{2}\right)\)

\(\left(\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2\)\(=3-2=1\)

b)  \(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)

=\(\sqrt{(2+2\sqrt{5})^2}+\sqrt{(\sqrt{5}-2)^2}\)

=\(2+2\sqrt{5}+\sqrt{5}-2\)\(=3\sqrt{5}\)

13 tháng 5 2019

\(A=\sqrt{9-4\sqrt{5}}+\frac{1}{\sqrt{5}-2}=\sqrt{\left(\sqrt{5}-2\right)^2}+\frac{1}{\sqrt{5}-2}=\sqrt{5}-2+\frac{1}{\sqrt{5}-2}.\Leftrightarrow\) 

\(A=\frac{\left(\sqrt{5}-2\right)^2+1}{\sqrt{5}-2}=\frac{10-4\sqrt{5}}{\sqrt{5}-2}=\frac{\left(10-4\sqrt{5}\right)\left(\sqrt{5}+2\right)}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}=10\sqrt{5}+20-20-8\sqrt{5}=\) 

\(=2\sqrt{5}\)