Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{c-b}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{a-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{b-a}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{c-b+b-a+a-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
ta có : a+b+c=0=>a+b=-c ; b+c=-a ; a+c=-b
ta có: M= \(\frac{2ab}{a^2+\left(b+c\right)\left(b-c\right)}+\frac{2bc}{b^2+\left(c+a\right)\left(c-a\right)}+\frac{2ca}{c^2+\left(a+b\right)\left(a-b\right)}\)
M=\(\frac{2ab}{a^2-a\left(b-c\right)}+\frac{2bc}{b^2-b\left(c-a\right)}+\frac{2ca}{c^2-c\left(a-b\right)}\)
M=\(\frac{2ab}{a\left(a-b+c\right)}+\frac{2bc}{b\left(b-c+a\right)}+\frac{2ca}{c\left(c-a+b\right)}\)
M=\(\frac{2ab}{-ab+\left(a+c\right)}+\frac{2bc}{-bc+\left(a+b\right)}+\frac{2ac}{-ac+\left(b+c\right)}\)
M=\(\frac{2ab}{-2ab}+\frac{2bc}{-2bc}+\frac{2ca}{-2ca}\)
M=-1-1-1=-3
Vậy với a+b+c=0 thì M=-3
A \(=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a-b\right)\left(b-a\right)\left(c-a\right)}\)
\(=\frac{2\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{2\left(a-b\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{2\left(a-b\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a-b\right)\left(b-a\right)\left(c-a\right)}\)
\(=\frac{2\left(b-c\right)\left(c-a\right)+2\left(a-b\right)\left(c-a\right)+2\left(a-b\right)\left(b-c\right)+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a-b\right)\left(b-a\right)\left(c-a\right)}\)
\(=\frac{2ab+2ac+2bc-2a^2-2b^2-2c^2+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a-b\right)\left(b-a\right)\left(c-a\right)}\)
\(=\frac{-\left(a^2-2ab+b^2\right)-\left(b^2-2bc+c^2\right)-\left(c^2-2ac+a^2\right)+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a-b\right)\left(b-a\right)\left(c-a\right)}\)
\(=\frac{-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a-b\right)\left(b-a\right)\left(c-a\right)}\)
\(=\frac{0}{\left(a-b\right)\left(b-a\right)\left(c-a\right)}\) = 0
tham khảo nha
lỗi không gửi đc ảnh