K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
28 tháng 6 2021

\(\left(3\sqrt{2}+\sqrt{6}\right)\sqrt{6-3\sqrt{3}}=\left(3+\sqrt{3}\right)\sqrt{12-6\sqrt{3}}=\left(3+\sqrt{3}\right)\sqrt{9-2.3.\sqrt{3}+3}\)

\(=\left(3+\sqrt{3}\right)\sqrt{3^2-2.3.\sqrt{3}+\left(\sqrt{3}\right)^2}=\left(3+\sqrt{3}\right)\sqrt{\left(3-\sqrt{3}\right)^2}\)

\(=\left(3+\sqrt{3}\right)\left|3-\sqrt{3}\right|=\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)=6\)

7 tháng 7 2021

\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right)\left(\sqrt{5}-\sqrt{2}\right)=\left(\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)\)

\(=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-3\)

7 tháng 7 2021

\(=\left[\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\sqrt{5}\right]\left(\sqrt{5}-\sqrt{2}\right)=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)=-3\)

3 tháng 7 2017

M không tồn tại thì làm sao mà rút gọn được

4 tháng 7 2017

được bạn ạ mình nhờ thầy giải ra mà bạn tính máy tính mới ko ra thôi

d) Ta có: \(D=\left(\dfrac{5\sqrt{x}-6}{x-9}-\dfrac{2}{\sqrt{x}+3}\right):\left(1+\dfrac{6}{x-9}\right)\)

\(=\dfrac{5\sqrt{x}-6-2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{x-9+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{5\sqrt{x}-6-2\sqrt{x}+6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{x-3}\)

\(=\dfrac{3\sqrt{x}}{x-3}\)

f) Ta có: \(\left(\dfrac{3}{\sqrt{1+x}}+\sqrt{1-x}\right):\left(\dfrac{3}{\sqrt{1-x^2}}+1\right)\)

\(=\dfrac{3+\sqrt{1-x^2}}{\sqrt{1+x}}:\dfrac{3+\sqrt{1-x^2}}{\sqrt{1-x^2}}\)

\(=\dfrac{\sqrt{1-x^2}}{\sqrt{1+x}}=\sqrt{1-x}\)

Câu 1:

Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)

Câu 3: 

Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)

\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)

\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)

\(=\sqrt{a}\left(\sqrt{a}-2\right)\)

\(=a-2\sqrt{a}\)

29 tháng 7 2018

\(\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}-2\right)\left(\sqrt{2+\sqrt{3}}\right)=\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}-2\right)\left(\frac{\sqrt{6}+\sqrt{2}}{2}\right)\)\(=\left(2+\sqrt{3}\right)\left(\sqrt{3}-2\right)=-1\)

29 tháng 7 2018

\(\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}-2\right).\sqrt{2+\sqrt{3}}\)

\(=\sqrt{2}.\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right).\sqrt{2+\sqrt{3}}\)

\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right).\sqrt{4+2\sqrt{3}}\)

\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right).\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right)\left(\sqrt{3}+1\right)\)

\(=\left(\sqrt{3}+1\right)^2\left(\sqrt{3}-2\right)\)

\(=\left(4+2\sqrt{3}\right)\left(\sqrt{3}-2\right)\)

\(=2\left(2+\sqrt{3}\right)\left(\sqrt{3}-2\right)\)

\(=-2\)

9 tháng 8 2015

\(\sqrt{2}D=\left(3\sqrt{2}+\sqrt{6}\right)\cdot\sqrt{12-6\sqrt{3}}=\left(3\sqrt{2}+\sqrt{6}\right)\sqrt{9-2.3\sqrt{3}+3}\)

          \(\left(3\sqrt{2}+\sqrt{6}\right)\left(3-\sqrt{3}\right)\)

Nhân ra rút gọn