Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(A=\left(2x+y\right)^2-\left(2x-y\right)^2\)
\(=\left(2x+y-2x+y\right)\left(2x+y+2x-y\right)\)
\(=4x\cdot2y=8xy\)
b: Ta có: \(B=\left(3x+2\right)^2+2\left(3x+2\right)\left(1-2y\right)+\left(2y-1\right)^2\)
\(=\left(3x+2+1-2y\right)^2\)
\(=\left(3x-2y+3\right)^2\)
Câu A) là \(\left(2x+y\right)^2-\left(y-2x\right)^2\)
Chứ ko phải là\(\left(2x+y\right)^2-\left(2x-y\right)^2\)
Nhưng dù sao thì cũng cảm ơn
\((2x+y) (4x^2-2xy+y^2)-(3x-y)(9x^2+3xy+y^2) =8x^3+y^3-9x^3+y^3=17x^3\)
\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
\(=\left(2x+y\right)\left[\left(2x\right)^2-2xy+y^2\right]-\left(3x-y\right)\left[\left(3x\right)^2+3xy+y^2\right]\)
\(=\left(2x\right)^3+y^3-\left[\left(3x\right)^3-y^3\right]\)
\(=8x^3+y^3-27x^3+y^3\)
\(=-19x^3+2y^3\)
b: Ta có: \(\left(4x-y\right)\left(4x+y\right)-2\left(3x-2y\right)^2+\left(x-3y\right)^2\)
\(=16x^2-y^2-2\left(9x^2-12xy+4y^2\right)+x^2-6xy+9y^2\)
\(=17x^2-6xy+8y^2-18x^2+24xy-8y^2\)
\(=-x^2+18xy\)
c: Ta có: \(\left(2a-3b+4c\right)\left(2a-3b-4c\right)\)
\(=\left(2a-3b\right)^2-16c^2\)
\(=4a^2-12ab+9b^2-16c^2\)
a) \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)
\(=3x^2-6x-5x+5x^2-8x^2+24\)
\(=24-11x\)
b) \(\left(4x^2-3y\right)\cdot2y-\left(3x^2-4y\right)\cdot3y\)
\(=8x^2y-6y^2-9x^2y+12y^2\)
\(=6y^2-x^2y\)
c) \(3y^2\left[\left(2x-1\right)+y+1\right]-y\left(1-y-y^2\right)+y\)
\(=3y^2\cdot\left(2x-1+y+1\right)-y\cdot\left(1-y-y^2\right)+y\)
\(=6xy^2-3y^2+3y^3+3y^2-y+y^2+y^3+y\)
\(=4y^3+y^2+6xy^2\)
\(\left(x+y\right)^2+\left(x-y\right)^2+\left(x-y\right)\left(x+y\right)-3x^2\)
\(=\left(x^2+2xy+y^2\right)+\left(x^2-2xy+y^2\right)+\left(x^2-y^2\right)-3x^2\)
\(=x^2+2xy+y^2+x^2-2xy+y^2+x^2-y^2-3x^2\)
\(=3x^2+y^2-3x^2\)
\(=y^2\)
a: \(=\dfrac{\left(x+y\right)^3}{2\left(x+y\right)^2}=\dfrac{x+y}{2}\)
b: \(=\dfrac{x^2\left(3x-5\right)+3\left(3x-5\right)}{3x-5}=x^2+3\)
=-8y3+6xy2-9x2y+27x3
P/s:chả bít thu gọn hay kéo dài nó ra nx =.="
\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)+\left(3x-y\right)\left(9x^2+3xy+y^2\right)-35\left(x-1\right)\left(x^2+x+1\right)\)
\(=8x^3+y^3+27x^3-y^3-35\left(x^3-1\right)\)
\(=35x^3-35x^3+35\)
\(=35\)
Cái này đơn giản như đang giỡn thôi:
\(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-\left(3x-y\right)^3-27x^2y\)
\(=\left(3x\right)^3+y^3-\left[\left(3x\right)^3-3.\left(3x^2\right).+3.3x.y^2-y^3\right]-27x^2y\)
\(=27x^3+y^3-27x^3+27x^2y-9xy^2+y^3-27x^2y\)
\(=2y^3-9xy^2\)