Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Ta có: cota + tana) 2 = cot2a + 2.cota.tana + tan2a
= (cot2a + 1) + (tan2a + 1)
\(-\frac{\pi}{2}< a< 0\Rightarrow cosa>0\)
\(\Rightarrow cosa=\sqrt{1-sin^2a}=\frac{4}{5}\)
\(tana=\frac{sina}{cosa}=-\frac{3}{4}\)
\(A=\frac{tana+cota}{1+tan^2a}=\frac{tana+\frac{1}{tana}}{1+tan^2a}=\frac{1+tan^2a}{\left(1+tan^2a\right)tana}=\frac{1}{tana}=cota\)
\(sina=\frac{3}{5}\Rightarrow sin^2a=\frac{9}{25}\) ; \(cos^2a=1-\frac{9}{25}=\frac{16}{25}\)
\(A=\frac{cota+tana}{cota-tana}=\frac{sina.cosa\left(cota+tana\right)}{sina.cosa\left(cota-tana\right)}=\frac{cos^2a+sin^2a}{cos^2a-sin^2a}=\frac{1}{cos^2a-sin^2a}=\frac{1}{\frac{16}{25}-\frac{9}{25}}=\frac{25}{7}\)
\(B=\frac{sin^2a-cos^2a}{sin^2a-3cos^2a}=\frac{\frac{sin^2a}{sin^2a}-\frac{cos^2a}{sin^2a}}{\frac{sin^2a}{sin^2a}-\frac{3cos^2a}{sin^2a}}=\frac{1-cot^2a}{1-3cot^2a}=\frac{1-\left(-\frac{1}{3}\right)^2}{1-3\left(-\frac{1}{3}\right)^2}=\)
\(C_1=sin^2a+cos^2a+cos^2a=1+cos^2a=1+\frac{1}{1+tan^2a}=1+\frac{1}{1+\left(-2\right)^2}\)
\(C_2=\left(sin^2a+cos^2a\right)\left(sin^2a-cos^2a\right)=sin^2a-cos^2a=1-2cos^2a\)
\(=1-\frac{2}{1+tan^2a}=1-\frac{2}{1+\left(-2\right)^2}\)
\(A=\frac{1-sinx-1+2sin^2x}{2sinx.cosx-cosx}=\frac{sinx\left(2sinx-1\right)}{cosx\left(2sinx-1\right)}=\frac{sinx}{cosx}=tanx\)
\(B=\frac{2sinx.cosx+sinx}{1+2cos^2x-1+cosx}=\frac{sinx\left(2cosx+1\right)}{cosx\left(2cosx+1\right)}=\frac{sinx}{cosx}=tanx\)
\(C=\frac{sina.cosa\left(tana-cota\right)}{sina.cosa\left(tana+cota\right)}+cos2a=\frac{sin^2a-cos^2a}{sin^2a+cos^2a}+cos2a\)
\(=-cos2a+cos2a=0\)
\(\left(cota+tana\right)^2-\left(cota-tana\right)^2\)
\(=cot^2a+tan^2a+2tana.cota-cot^2a-tan^2a+2tana.cota\)
\(=4tana.cota=4\)