Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{2727-101}{3.303+404}=\dfrac{2626}{909+404}=\dfrac{2626}{1313}=2\)
b) \(\dfrac{8.9-4.15}{12.7-180}=\dfrac{72-60}{84-180}=\dfrac{12}{-96}=\dfrac{-1}{8}\)
c) \(\dfrac{-19}{3^2.7.11}=\dfrac{-19}{9.7.11}=\dfrac{-19}{63.11}=\dfrac{-19}{693}\)
d) \(\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}=\dfrac{2^{12}.3^{10}+120.6^9}{2^{12}.3^{12}-6^{11}}=\dfrac{2^2.6^{10}+20.6.6^9}{6^{12}-6^{11}}=\dfrac{4.6^{10}+20.6^{10}}{6^{11}\left(6-1\right)}=\dfrac{\left(4+20\right).6^{10}}{5.6^{11}}=\dfrac{24}{30}=\dfrac{4}{5}\)
\(a,\left(\dfrac{7}{20}+\dfrac{11}{15}-\dfrac{15}{12}\right):\left(\dfrac{11}{20}-\dfrac{26}{45}\right).\)
\(=\left(\dfrac{21}{60}+\dfrac{44}{60}-\dfrac{75}{60}\right):\left(\dfrac{99}{180}-\dfrac{104}{180}\right).\)
\(=\left(\dfrac{65}{60}-\dfrac{75}{60}\right):\left(-\dfrac{5}{180}\right).\)
\(=-\dfrac{10}{60}:\left(-\dfrac{5}{180}\right).\)
\(=-\dfrac{1}{6}:\left(-\dfrac{1}{36}\right).\)
\(=-\dfrac{1}{6}.\left(-36\right).\)
\(=\dfrac{-1.\left(-36\right)}{6}=\dfrac{36}{6}=6.\)
Vậy......
\(b,\dfrac{5-\dfrac{5}{3}+\dfrac{5}{9}-\dfrac{5}{27}}{8-\dfrac{8}{3}+\dfrac{8}{9}-\dfrac{8}{27}}:\dfrac{15-\dfrac{15}{11}+\dfrac{15}{121}}{16-\dfrac{16}{11}+\dfrac{16}{121}}.\)
\(=\dfrac{5\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}{8\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}:\dfrac{15\left(1-\dfrac{1}{11}+\dfrac{1}{121}\right)}{16\left(1-\dfrac{1}{11}+\dfrac{1}{121}\right)}.\)
\(=\dfrac{5}{8}:\dfrac{15}{16}.\)
\(=\dfrac{5}{8}.\dfrac{16}{15}=\dfrac{5.16}{8.15}=\dfrac{1.2}{1.3}=\dfrac{2}{3}.\)
Vậy......
c, (làm tương tự câu b).
~ Học tốt!!! ~
Bài 2:
b) Gọi \(d\inƯC\left(21n+4;14n+3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\inƯ\left(1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(21n+4;14n+3\right)=1\)
hay \(\dfrac{21n+4}{14n+3}\) là phân số tối giản(đpcm)
Bài 1:
a) Ta có: \(A=1+2-3-4+5+6-7-8+...-299-300+301+302\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(297+298-299-300\right)+301+302\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)+603\)
\(=75\cdot\left(-4\right)+603\)
\(=603-300=303\)
Bài 2:
a) Vì tổng của hai số là 601 nên trong đó sẽ có 1 số chẵn, 1 số lẻ
mà số nguyên tố chẵn duy nhất là 2
nên số lẻ còn lại là 599(thỏa ĐK)
Vậy: Hai số nguyên tố cần tìm là 2 và 599
b,Gọi ƯCLN(21n+4,14n+3)=d
21n+4⋮d ⇒42n+8⋮d
14n+3⋮d ⇒42n+9⋮d
(42n+9)-(42n+8)⋮d
1⋮d ⇒ƯCLN(21n+4,14n+3)=1
Vậy phân số 21n+4/14n+3 là phân số tối giản
`#lv`
`A=(-1)+(-5)+(-9)+...+(-101)`
`=-(1+5+9+...+101)`
Số số hạng là :
`[101-(-1)]:4+1=26(` số hạng `)`
Tổng là :
`[(-101)+(-1)]xx26:2=-1326`
Vậy `A=-1326`
__
`B=-5/17 . 8/19 + (-12)/17 . 8/19 - 11/19`
`=((-5)/17+(-12)/17).8/19-11/19`
`=-1.8/19-11/19`
`=-8/19-11/19`
`=-8/19+(-11)/19`
`=-19/19`
`=-1`
__
`C=10/1.6 + 10/6.11 + 10/11.16 + ... + 10/2016.2021`
`=2.(1-1/6+1/6-1/11+...+1/2016-1/2021)`
`=2(1-1/2021)`
`=2. (2021/2021-1/2021)`
`=2. 2020/2021`
`=4040/2021`
\(1,\)
\(\dfrac{45^2.3^8.10^5}{5^5.3^7.18^5}\)
\(=\dfrac{3^4.5^2.3^8.2^5.5^5}{5^5.3^7.2^5.3^{10}}\)
\(=\dfrac{3^{12}.2^5.5^7}{5^5.3^{17}.2^5}\)
\(=\dfrac{1.5^2}{3^5.1}\)
\(=\dfrac{25}{243}\)
\(2,\)
\(\dfrac{4^5.9^4+2.6^9}{2^{10}.3^8+6^8.20}\)
\(=\dfrac{2^{10}.3^8+2.2^9.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}\)
\(=\dfrac{2^{10}.3^8+2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)
\(=\dfrac{2^{10}.3^8.4}{2^{10}.3^8.6}\)
\(=\dfrac{2^{12}.3^8}{2^{11}.3^9}\)
\(=\dfrac{2}{3}\)
\(3,\)
\(\dfrac{15.3^{11}+4.27^4}{9^7}\)
\(=\dfrac{3.5.3^{11}+2^2.3^{12}}{3^{14}}\)
\(=\dfrac{5.3^{12}+2^2.3^{12}}{3^{14}}\)
\(=\dfrac{3^{12}\left(5+2^2\right)}{3^{14}}\)
\(=\dfrac{3^{12}.9}{3^{14}}\)
\(=\dfrac{3^{14}}{3^{14}}\)
\(=1\)
\(4,\)
\(\dfrac{4^7.2^8}{3.2^{15}.16^2-5^2\left(2^{10}\right)^2}\)
\(=\dfrac{2^{22}}{3.2^{23}-5^2.2^{20}}\)
\(=\dfrac{2^{22}}{2^{20}.\left(-1\right)}\)
\(=\dfrac{2^{22}}{-2^{20}}\)
\(=-4\)
* Mấy bài còn lại tương tự đấy bạn tự làm đi
Mình mỏi tay lắm rồi
P/s:khuyến khích tự làm,chỉ làm mẫu 1 câu:
1)\(\dfrac{45^2.3^8.10^5}{5^5.3^7.18^5}=\dfrac{\left(5.9\right)^2.3.3^7.\left(2.5\right)^5}{5^5.3^7.\left(2.9\right)^5}\)\(=\dfrac{5^2.9^2.3.3^7.2^5.5^5}{5^5.3^7.2^5.9^5}\)\(=\dfrac{5^2.9^2.3.1.1.1}{1.1.1.9^5}\)\(=\dfrac{5^2.9^2.3}{9^5}=\dfrac{5^2.9^2.3}{9^2.9^3}=\dfrac{5^2.3}{9^3}=\dfrac{75}{729}=\dfrac{25}{243}\)
\(A=\dfrac{2^{20}\cdot3^{10}\cdot35+2^{10}\cdot65+2^2\cdot3^2\cdot2^{12}\cdot3^6\cdot3^2\cdot5^2}{2^{12}\cdot5^4}\)
\(=\dfrac{2^{10}\left(2^{10}\cdot3^{10}\cdot35+65+2^4\cdot3^{10}\cdot5^2\right)}{2^{12}\cdot5^4}\)
\(=\dfrac{1}{4}\cdot\dfrac{2^4\cdot3^{10}\cdot5\cdot\left(2^6\cdot7+5\right)+65}{5^4}\)
\(=\dfrac{1}{4}\cdot\dfrac{2^4\cdot3^{11}\cdot5\cdot151+65}{5^4}\)
\(=\dfrac{1}{4}\cdot\dfrac{2^4\cdot3^{11}\cdot151+13}{5^3}=\dfrac{2^4\cdot3^{11}\cdot151+13}{500}\)
Rút gọn rồi tính:
a) \(\frac{8}{10}-\frac{12}{9}+\frac{10}{15}\)
\(=\frac{4}{5}-\frac{4}{3}+\frac{2}{3}\)
\(=\frac{12-20+10}{15}\)
\(=\frac{2}{15}\)
b) \(\left(\frac{20}{16}-\frac{15}{12}\right)\div\left(\frac{6}{8}-\frac{9}{12}\right)\)
\(=\left(\frac{5}{4}-\frac{5}{4}\right)\div\left(\frac{3}{4}-\frac{3}{4}\right)\)
\(=1\div1\)
\(=1\)
\(a,\frac{8}{10}-\frac{12}{9}+\frac{10}{15}\)
\(=\frac{4}{5}-\frac{4}{3}+\frac{2}{3}\)
\(=\frac{4}{5}-\left(\frac{4}{3}+\frac{2}{3}\right)\)
\(=\frac{4}{5}-2\)
\(=\frac{4}{5}+\frac{-10}{5}\)
\(=\frac{-6}{5}\)
\(b,\left(\frac{20}{16}-\frac{15}{12}\right):\left(\frac{6}{8}-\frac{9}{12}\right)\)
\(=\left(\frac{5}{4}-\frac{5}{4}\right):\left(\frac{3}{4}-\frac{3}{4}\right)\)
\(=0:0\)
\(=0\)