K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019

Quy đồng đi, ta sẽ được  \(A=0\)

16 tháng 7 2019

\(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-c\right)\left(b-a\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)

\(A=\frac{-b+c}{-\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\frac{-c+a}{-\left(a-b\right)\left(a-c\right)\left(b-a\right)}+\frac{-a+b}{-\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(A=\frac{-b+c-c+a-a+b}{-\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(A=\frac{0}{-\left(a-b\right)\left(a-c\right)\left(b-a\right)}\)

A = 0

16 tháng 12 2020

đơn giản, cứ áp dụng theo công thức là ra!!!!

20 tháng 8 2021

\(N=\left(a-3b\right)^2-\left(a+3b\right)^2-\left(a-1\right)\left(b-2\right)=\left(a-3b-a-3b\right)\left(a-3b+a+3b\right)-\left(ab-2a-b+2\right)=\left(-6b\right).2a-ab+2a+b-2=2a+b-13ab-2\)

Thay \(a=\dfrac{1}{2};b=-3\) vào N ta được: \(N=2a+b-13ab-2=2.\dfrac{1}{2}-3-13.\dfrac{1}{2}.\left(-3\right)-2=\dfrac{31}{2}\)

Ta có: \(N=\left(a-3b\right)^2-\left(a+3b\right)^2-\left(a-1\right)\left(b-2\right)\)

\(=a^2-6ab+9b^2-a^2-6ab-9b^2-ab+2a+b-2\)

\(=-13ab+2a+b-2\)

\(=-13\cdot\dfrac{1}{2}\cdot\left(-3\right)-1-3-2\)

\(=\dfrac{27}{2}\)

20 tháng 2 2019

Ta có:\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(b-a\right)+\left(a-c\right)}{\left(a-b\right)\left(a-c\right)}=\frac{b-a}{\left(a-b\right)\left(a-c\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}+\frac{1}{c-a}\)

Chứng minh tương tự,ta được:

\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{a-b}+\frac{1}{b-c}\)

\(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{b-c}+\frac{1}{c-a}\)

\(\Rightarrow\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)\left(đpcm\right)\)

25 tháng 9 2018

\(VT=\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{\left(b-a\right)-\left(c-a\right)}{\left(b-a\right)\left(c-a\right)}+\frac{\left(c-b\right)-\left(a-b\right)}{\left(c-b\right)\left(a-b\right)}+\frac{\left(a-c\right)-\left(b-c\right)}{\left(a-c\right)\left(b-c\right)}\)

\(=\frac{1}{c-a}-\frac{1}{b-a}+\frac{1}{a-b}-\frac{1}{c-b}+\frac{1}{b-c}-\frac{1}{a-c}\)

\(=\frac{1}{c-a}+\frac{1}{a-b}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{b-c}+\frac{1}{c-a}\)

\(=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=VP\left(đpcm\right)\)

19 tháng 2 2017

1) \(M=a^2b^2c^2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

Em chú ý bài toán sau nhé: Nếu a+b+c=0 <=> \(a^3+b^3+c^3=3abc\)

CM: có:a+b=-c <=> \(\left(a+b\right)^3=-c^3\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)

Chú ý: a+b=-c nên \(a^3+b^3+c^3=3abc\)

Do \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

Thay vào biểu thwusc M ta được M=3abc (ĐPCM)

2, em có thể tham khảo trong sách Nâng cao phát triển toán 8 nhé, anh nhớ không nhầm thì bài này trong đó

Nếu không thấy thì em có thể quy đồng lên mà rút gọn

20 tháng 2 2017

vâng e cảm ơn anh