Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án: A
Ta có:
A = c o s 2 x + sin 2 x + sin 2 x 2 sin x + c o s x
Chọn D.
Với 2 góc phụ nhau thì sin góc này bằng cos góc kia và ngược lại . do đó ta có:
A = cos540.cos 40 – cos360.cos860 = cos540.cos 40 – sin 540.sin40
= cos ( 540 + 40) = cos 580
Chọn C.
Ta có A = sin 2a.tan2a + 4sin2a - tan2a + 3cos2a
= 3sin2a + 3cos2a = 3.
`A=[sin x + sin 2x + sin 3x]/[cos x + cos 2x + cos 3x]`
`A=[2sin2x.cosx+sin2x]/[2cos2x.cosx+cos2x]`
`A=[sin2x(2cosx+1)]/[cos2x(2cosx+1)]`
`A=tan 2x`
\(A=\dfrac{sinx-sin2x+sin3x}{cosx-cos2x+cos3x}\)
\(ĐK\left\{{}\begin{matrix}cos2x\ne0\\cosx\ne\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\) \(A=\dfrac{sinx+sin3x-sin2x}{cosx+cos3x-cos2x}\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}=\dfrac{2sin2x.cosx-sin2x}{2cos2x.cosx-cos2x}\\=\dfrac{sin2x\left(2cosx-1\right)}{cos2x\left(2cosx-1\right)}\end{matrix}\right.\) \(\Rightarrow\) \(A=tan2x\)