Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
Cân nặng | 39 | 40 | 41 | 42 | 43 | 45 |
số lượng | 1 | 4 | 3 | 4 | 1 | 2 |
N=15
c: Cân nặng trung bình là:
\(\dfrac{39\cdot1+40\cdot4+41\cdot3+42\cdot4+43+45\cdot2}{15}\simeq41,5\left(kg\right)\)
a.
Cân nặng (kg) | 39 | 40 | 41 | 42 | 43 | 45 |
Số học sinh | 1 | 4 | 3 | 4 | 1 | 2 |
b. Có 2 bạn cân nặng 45 kilogam.
a, a+54
b, b+4
Sơ đồ con đường |
Lời giải chi tiết |
Áp dụng tính chất phân phối của phép nhân phân phối đối với phép cộng |
a , a + 42 + 6. ( − 7 + 9 ) = a + 42 − 6.7 + 6.9 = a + 42 − 42 + 54 = a + 54 b , b − 80 − 4. ( − 20 − 1 ) = b − 80 + 4.20 + 4 = b − 80 − 80 + 4 = b + 4 |
Bài 2:
b) Gọi \(d\inƯC\left(21n+4;14n+3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\inƯ\left(1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(21n+4;14n+3\right)=1\)
hay \(\dfrac{21n+4}{14n+3}\) là phân số tối giản(đpcm)
Bài 1:
a) Ta có: \(A=1+2-3-4+5+6-7-8+...-299-300+301+302\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(297+298-299-300\right)+301+302\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)+603\)
\(=75\cdot\left(-4\right)+603\)
\(=603-300=303\)
Bài 2:
a) Vì tổng của hai số là 601 nên trong đó sẽ có 1 số chẵn, 1 số lẻ
mà số nguyên tố chẵn duy nhất là 2
nên số lẻ còn lại là 599(thỏa ĐK)
Vậy: Hai số nguyên tố cần tìm là 2 và 599
b,Gọi ƯCLN(21n+4,14n+3)=d
21n+4⋮d ⇒42n+8⋮d
14n+3⋮d ⇒42n+9⋮d
(42n+9)-(42n+8)⋮d
1⋮d ⇒ƯCLN(21n+4,14n+3)=1
Vậy phân số 21n+4/14n+3 là phân số tối giản
4A=4+42+43+44+...+450
4A-A=3A=450-1
A=\(\frac{4^{50}-1}{3}\)