K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\sqrt{8+2\cdot2\sqrt{2}\cdot\sqrt{5}+5}+\sqrt{8-2\cdot2\sqrt{2}\cdot\sqrt{5}+5}\)

\(=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)

\(=2\sqrt{2}+\sqrt{5}+2\sqrt{2}-\sqrt{5}=4\sqrt{2}\)

b: \(=2\cdot\sqrt{17-3\sqrt{32}}\)

\(=2\cdot\sqrt{9-2\cdot3\cdot2\sqrt{2}+8}\)

\(=2\left(3-2\sqrt{2}\right)=6-4\sqrt{2}\)

23 tháng 7 2017

a, \(=\sqrt{10+2\sqrt{17-4\sqrt{\left(\sqrt{5}+2\right)^2}}}\)

\(=\sqrt{10+2\sqrt{17-4\left(\sqrt{5}+2\right)}}\)

\(=\sqrt{10+2\sqrt{17-4\sqrt{5-8}}}\)

\(=\sqrt{10+2\sqrt{9-4\sqrt{5}}}\)

\(=\sqrt{10+2\sqrt{\left(\sqrt{5}-2\right)^2}}\)

\(=\sqrt{10+2\left(\sqrt{5}-2\right)}\)

\(=\sqrt{10+2\sqrt{5}-4}\)

\(=\sqrt{6+2\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}+1\)

23 tháng 7 2017

b, \(=\sqrt{6+2\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}\)

\(=\sqrt{6+2\sqrt{5-\left(2\sqrt{3}+1\right)}}\)

\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)

\(=\sqrt{6+2\sqrt{3}-2}\)

\(=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

5 tháng 10 2020

b) \(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)\(=\sqrt{4+\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}=\sqrt{4+5}=3\)

27 tháng 7 2015

1. \(=\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}+\sqrt{3+\sqrt{\left(2\sqrt{3}+1\right)^2}}=\sqrt{5-2\sqrt{3}-1}+\sqrt{3+2\sqrt{3}+1}=\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)

21 tháng 6 2016

1/ \(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)

\(=\sqrt{5-\left(1+\sqrt{12}\right)^2}+\sqrt{3+\left(1+\sqrt{12}\right)^2}\)

\(=\sqrt{5-\left|1+\sqrt{12}\right|}+\sqrt{3+\left|1+\sqrt{12}\right|}\)

\(=\sqrt{5-1-\sqrt{12}}+\sqrt{3+1+\sqrt{12}}\)

\(=\sqrt{4-\sqrt{12}}+\sqrt{4+\sqrt{12}}\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\left|\sqrt{3}-1\right|+\left|\sqrt{3}+1\right|\)

\(=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)

7 tháng 10 2018

+) ta có : \(A=\sqrt{13+4\sqrt{10}}-\sqrt{13-4\sqrt{10}}=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}-\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)

\(=2\sqrt{2}+\sqrt{5}-2\sqrt{2}+\sqrt{5}=2\sqrt{5}\) (sữa đề)

+) ta có : \(B=\sqrt{\dfrac{3-2\sqrt{2}}{17-12\sqrt{2}}}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)

\(=\sqrt{\dfrac{\left(\sqrt{2}-1\right)^2}{\left(3-2\sqrt{2}\right)^2}}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}=\dfrac{\sqrt{2}-1}{3-2\sqrt{2}}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)

\(=\dfrac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)^2}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}=\dfrac{1}{\sqrt{2}-1}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)

\(=\dfrac{\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+\sqrt{\dfrac{\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}\)

\(=\sqrt{2}+1+2-\sqrt{3}=3-\sqrt{3}+\sqrt{2}\) (sữa đề )

+) đk : \(x\ne-3\)

ta có : \(C=\dfrac{\sqrt{x^2+6x+9}}{x+3}=\dfrac{\sqrt{\left(x+3\right)^2}}{x+3}=\dfrac{\left|x+3\right|}{x+3}\)

\(\left[{}\begin{matrix}C=1\left(x>-3\right)\\C=-1\left(x< -3\right)\end{matrix}\right.\)

+) \(m\ge\dfrac{5}{2}\)

ta có : \(D=\sqrt{2m+4+6\sqrt{2m-5}}-\sqrt{2m-5}\)

\(=\sqrt{\left(\sqrt{2m-5}+3\right)^2}-\sqrt{2m-5}=\left|\sqrt{2m-5}+3\right|-\sqrt{2m-5}\)

\(\Leftrightarrow\left[{}\begin{matrix}C=3\left(m\ge7\right)\\C=-3-2\sqrt{2m-5}\left(\dfrac{5}{2}\le m\le7\right)\end{matrix}\right.\)

7 tháng 10 2018

Mysterious Person giúp mk nha

25 tháng 7 2018

f, \(\sqrt{\sqrt{5}+\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}+\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}=\sqrt{\sqrt{5}+\sqrt{3-2\sqrt{5}+3}}=\sqrt{\sqrt{5}+\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}+\sqrt{\left(\sqrt{5}-1\right)^2}}=\sqrt{\sqrt{5}+\sqrt{5}-1}=\sqrt{2\sqrt{5}-1}\)

25 tháng 7 2018

mik sửa lại câu f , tí nhé :

f , \(\sqrt{\sqrt{5}+\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

2 tháng 7 2018

a)                  \(A=\sqrt{4-\sqrt{15}}-\sqrt{2+\sqrt{3}}\)

\(\Rightarrow\)\(\sqrt{2}A=\sqrt{8-2\sqrt{15}}-\sqrt{4+2\sqrt{3}}\)

                         \(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\)

                          \(=\sqrt{5}-\sqrt{3}-\left(\sqrt{3}+1\right)=\sqrt{5}-1\)

\(\Rightarrow\)\(A=\frac{\sqrt{5}-1}{\sqrt{2}}\)

b) tương tự câu a

c) \(\sqrt{6+2\sqrt{5-\sqrt{13+4\sqrt{3}}}}-\sqrt{6-2\sqrt{5+\sqrt{13-4\sqrt{3}}}}\)

\(=\sqrt{6+2\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}}-\sqrt{6-2\sqrt{5+\sqrt{\left(\sqrt{12}-1\right)^2}}}\)

\(=\sqrt{6+2\sqrt{5-\left(\sqrt{12}+1\right)}}-\sqrt{6-2\sqrt{5+\left(\sqrt{12}-1\right)}}\)

\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}-\sqrt{6-2\sqrt{4+2\sqrt{3}}}\)

\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}-\sqrt{6-2\sqrt{\left(\sqrt{3}+1\right)^2}}\)

\(=\sqrt{6+2\left(\sqrt{3}-1\right)}-\sqrt{6-2\left(\sqrt{3}+1\right)}\)

\(=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\left(\sqrt{3}+1\right)-\left(\sqrt{3}-1\right)=2\)