K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

f, \(\sqrt{\sqrt{5}+\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}+\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}=\sqrt{\sqrt{5}+\sqrt{3-2\sqrt{5}+3}}=\sqrt{\sqrt{5}+\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}+\sqrt{\left(\sqrt{5}-1\right)^2}}=\sqrt{\sqrt{5}+\sqrt{5}-1}=\sqrt{2\sqrt{5}-1}\)

25 tháng 7 2018

mik sửa lại câu f , tí nhé :

f , \(\sqrt{\sqrt{5}+\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

25 tháng 7 2019
https://i.imgur.com/g7mbF2P.jpg
19 tháng 7 2018

1. \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)

\(=\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)

\(=\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{2}\)

\(=2\sqrt{2}\)

9 tháng 9 2016

Bài 2 : 

a,\(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12=>\sqrt{24}+\sqrt{45}< 12\)

b. \(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2=>\sqrt{37}-\sqrt{15}>2\)

c, \(\sqrt{15}.\sqrt{17}>\sqrt{15}.\sqrt{16}>\sqrt{16}=>\sqrt{15}.\sqrt{17}>\sqrt{16}\)

 

14 tháng 8 2020

a, \(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)

= \(\sqrt{3^2-2.3.\sqrt{6}+\left(\sqrt{6}\right)^2}+\sqrt{6^2-2.6.\sqrt{6}+\left(\sqrt{6}\right)^2}\)

= \(\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(6-\sqrt{6}\right)^2}\)

= \(\left|3-\sqrt{6}\right|+\left|6-\sqrt{6}\right|\)

= \(3-\sqrt{6}+6-\sqrt{6}\)

= \(9-2\sqrt{6}\)

b. Đặt B = \(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)

Nhận xét : B > 0 , bình phương hai vế ta được :

\(B^2=\left(\sqrt{17-3\sqrt{32}}\right)^2+\left(\sqrt{17+3\sqrt{32}}\right)^2\)

\(B^2=17-3\sqrt{32}+17+3\sqrt{32}+2\sqrt{\left(17-3\sqrt{32}\right)\left(17+3\sqrt{32}\right)}\)

\(B^2=34+2\sqrt{17^2-\left(3\sqrt{32}\right)^2}\)

\(B^2=34+2\sqrt{289-288}\)

\(B^2=34+2=36\)

=> \(B=\pm\sqrt{36}\) mà B > 0 nên \(B=\sqrt{36}=6\)

c, Đặt C = \(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}\)

Nhận xét : C > 0 , bình phương hai vế ta đươc :

\(C^2=\left(\sqrt{49-5\sqrt{96}}\right)^2+\left(\sqrt{49+5\sqrt{96}}\right)^2\)

\(C^2=49-5\sqrt{96}+49+5\sqrt{96}+2\sqrt{\left(49-5\sqrt{96}\right)\left(49+5\sqrt{96}\right)}\)

\(C^2=98+2\sqrt{49^2-\left(5\sqrt{96}\right)^2}\)

\(C^2=98+2\sqrt{2401-2400}\)

\(C^2=98+2=100\)

=> \(C=\pm\sqrt{100}\) mà C > 0 nên \(C=\sqrt{100}=10\)

a) Ta có: \(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)

\(=\sqrt{9-2\cdot3\cdot\sqrt{6}+6}+\sqrt{27-2\cdot3\sqrt{3}\cdot2\sqrt{2}+8}\)

\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3\sqrt{3}-2\sqrt{2}\right)^2}\)

\(=\left|3-\sqrt{6}\right|+\left|3\sqrt{3}-2\sqrt{2}\right|\)

\(=3-\sqrt{6}+3\sqrt{3}-2\sqrt{2}\)(Vì \(\left\{{}\begin{matrix}3>\sqrt{6}\\3\sqrt{3}>2\sqrt{2}\end{matrix}\right.\))

b) Ta có: \(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)

\(=\frac{\sqrt{34-6\sqrt{32}}+\sqrt{34+6\sqrt{32}}}{\sqrt{2}}\)

\(=\frac{\sqrt{18-2\cdot3\sqrt{2}\cdot4+16}+\sqrt{18+2\cdot3\sqrt{2}\cdot4+16}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(3\sqrt{2}-4\right)^2}+\sqrt{\left(3\sqrt{2}+4\right)^2}}{\sqrt{2}}\)

\(=\frac{\left|3\sqrt{2}-4\right|+\left|3\sqrt{2}+4\right|}{\sqrt{2}}\)

\(=\frac{3\sqrt{2}-4+3\sqrt{2}+4}{\sqrt{2}}\)(Vì \(3\sqrt{2}>4>0\))

\(=\frac{6\sqrt{2}}{\sqrt{2}}=6\)

29 tháng 5 2017

Mk làm đc có 3 câu thôi.

Hỏi đáp Toán

Hỏi đáp Toán

29 tháng 5 2017

D = (4\(\sqrt{10}\) - 4\(\sqrt{6}\) + 5\(\sqrt{6}\) - 3\(\sqrt{10}\) )\(\sqrt{4-\sqrt{15}}\)

D = (\(\sqrt{10}\) + \(\sqrt{6}\) )\(\sqrt{4-\sqrt{15}}\)

D = \(\sqrt{\left(4-\sqrt{15}\right)10}\) + \(\sqrt{\left(4-\sqrt{15}\right)6}\)

D = \(\sqrt{40-10\sqrt{15}}\) + \(\sqrt{24-6\sqrt{15}}\)

D = \(\sqrt{\left(\sqrt{15}\right)^2-2.5.\sqrt{5}+5^2}\) + \(\sqrt{\left(\sqrt{15}\right)^2-2.3.\sqrt{15}+3^2}\)

D = \(\sqrt{\left(\sqrt{15}-5\right)^2}\) + \(\sqrt{\left(\sqrt{15}-3\right)^2}\)

D = 5 - \(\sqrt{15}\) + \(\sqrt{15}\) - 3 = 2

12 tháng 7 2019

\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=|2+\sqrt{3}|-|2-\sqrt{3}|\)

\(=2+\sqrt{3}-2+\sqrt{3}\)

\(=2\sqrt{3}\)

\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)

\(=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(=|3+\sqrt{2}|-|3-\sqrt{2}|\)

\(=3+\sqrt{2}-3+\sqrt{2}\)

\(=2\sqrt{2}\)

\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)

\(=\sqrt{\left(3+2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}\)

\(=|3+2\sqrt{2}|+|3-2\sqrt{2}|\)

\(=3+2\sqrt{2}+3-2\sqrt{2}\)

\(=6\)

\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)

\(=|2+\sqrt{5}|-|2-\sqrt{5}|\)

\(=2+\sqrt{5}-\sqrt{5}+2\)

\(=4\)

\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{\left(1-\sqrt{5}\right)^2}\)

\(=|1+\sqrt{5}|-|1-\sqrt{5}|\)

\(=1+\sqrt{5}-\sqrt{5}+1\)

\(=2\)

12 tháng 7 2019

\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(A=\sqrt{3}+2+2-\sqrt{3}\)

A = 2 + 2

A = 4

\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)

\(B=\sqrt{2}+3+3-\sqrt{2}\)

B = 3 + 3

B = 6

\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)

\(C=3+2\sqrt{2}+3-2\sqrt{2}\)

C = 3 + 3

C = 6

\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(D=\sqrt{5}+2-\sqrt{5}+2\)

D = 2 + 2

D = 4

\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)

\(E=\sqrt{5}+1-\sqrt{5}+1\)

E = 1 + 1

E = 2

6 tháng 8 2017

\(\sqrt{242}.\sqrt{26}.\sqrt{130}.\sqrt{0,9}-\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)\)

\(=\sqrt{121}.\sqrt{2}.\sqrt{2}.\sqrt{13}.\sqrt{13}.\sqrt{10}.\sqrt{0,9}-\left(2-1\right)\)

\(=11.2.13.\sqrt{9}-1=286.3-1=857\)

6 tháng 8 2017

\(\frac{3-\sqrt{6}}{\sqrt{12}-\sqrt{8}}-\frac{\sqrt{15}-\sqrt{5}}{2\sqrt{12}-4}+\frac{\sqrt{17-4\sqrt{15}}}{4}\)

\(=\frac{\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{2\left(\sqrt{3}-\sqrt{2}\right)}-\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{4\left(\sqrt{3}-1\right)}+\frac{\sqrt{\left(2\sqrt{3}-\sqrt{5}\right)^2}}{4}\)

\(=\frac{\sqrt{3}}{2}-\frac{\sqrt{5}}{4}+\frac{2\sqrt{3}-\sqrt{5}}{4}\)

\(=\sqrt{3}-\frac{\sqrt{5}}{4}\)

4 tháng 7 2018

\(1.A=\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)=5-4=1\)

\(2.B=\left(\sqrt{45}+\sqrt{63}\right)\left(\sqrt{7}-\sqrt{5}\right)=\left(3\sqrt{5}+3\sqrt{7}\right)\left(\sqrt{7}-\sqrt{5}\right)=2\left(7-5\right)=4\) \(3.C=\left(\sqrt{5}+\sqrt{3}\right)\left(5-\sqrt{15}\right)=\sqrt{5}\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=\sqrt{5}\left(5-3\right)=2\sqrt{5}\) \(4.\left(\sqrt{32}-\sqrt{50}+\sqrt{27}\right)\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)=\left(4\sqrt{2}-5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{3}+5\sqrt{2}-4\sqrt{2}\right)=\left(3\sqrt{3}-\sqrt{2}\right)\left(3\sqrt{3}+\sqrt{2}\right)=27-2=25\) \(5.E=\left(\sqrt{3}+1\right)^2-2\sqrt{3}+4=4+2\sqrt{3}-2\sqrt{3}+4=8\)

\(6.F=\left(\sqrt{15}-2\sqrt{3}\right)^2+12\sqrt{5}=27-12\sqrt{5}+12\sqrt{5}=27\)