Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{\sqrt{5}-\sqrt{3}-\sqrt{29-6\sqrt{20}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3}-\sqrt{\left(\sqrt{20}-3\right)}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3}-2\sqrt{5}+3}\)
\(=\sqrt{3-\sqrt{3}-\sqrt{5}}\)
A=\(\frac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}=\frac{\sqrt{3}+3+\sqrt{2}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{5}+1-\sqrt{7+2\sqrt{10}}}\)=\(\frac{\sqrt{2}\left(\sqrt{3}+3+\sqrt{2}-\sqrt{5+2\sqrt{6}}\right)}{\sqrt{2}\left(\sqrt{2}+\sqrt{5}+1-\sqrt{7+2\sqrt{10}}\right)}\)
A=\(\frac{\sqrt{6}+3\sqrt{2}+2-\sqrt{10+4\sqrt{6}}}{2+\sqrt{10}+\sqrt{2}-\sqrt{14+4\sqrt{10}}}=\frac{\sqrt{6}+3\sqrt{2}+2-\sqrt{6}-2}{2-\sqrt{10}+\sqrt{2}-\sqrt{10}-2}=\frac{3\sqrt{2}}{\sqrt{2}}=3\)
a) \(=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{16-2.4\sqrt{2}+2}}}\)
\(=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+4-\sqrt{2}}}\)\(=\sqrt{6-2\sqrt{3+2\sqrt{3}+1}=\sqrt{6-2\sqrt{\left(\sqrt{3}+1\right)^2}}=\sqrt{6-2\left(1+\sqrt{3}\right)}}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}=1+\sqrt{3}\)
b) Tương tự a) đ/s =5
a) đặt \(A=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
nhân cả hai vế với \(\sqrt{2}\), ta được:
\(\sqrt{2}A=\sqrt{2}\sqrt{4-\sqrt{7}}-\sqrt{2}\sqrt{4+\sqrt{7}}\)
\(=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{\left(1-\sqrt{7}\right)^2}-\sqrt{\left(1+ \sqrt{7}\right)^2}\)
\(=\left|1-\sqrt{7}\right|-\left|1+\sqrt{7}\right|\)
\(=\sqrt{7}-1-\sqrt{7}-1\)
\(=-2\)
\(\Rightarrow A=-\frac{2}{\sqrt{2}}=-\sqrt{2}\)
a: \(=-6\sqrt{b}-\dfrac{1}{3}\cdot3\sqrt{3b}+\dfrac{1}{5}\cdot5\sqrt{6b}\)
\(=-6\sqrt{b}-\sqrt{3}\cdot\sqrt{b}+\sqrt{6}\cdot\sqrt{b}\)
\(=\sqrt{b}\left(-6-\sqrt{3}+\sqrt{6}\right)\)
c: \(=\sqrt{\left(5+2\sqrt{6}\right)^2}+\sqrt{\left(5-2\sqrt{6}\right)^2}\)
\(=5+2\sqrt{6}+5-2\sqrt{6}=10\)
d: \(A=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)
e: \(B=\sqrt{6+2\sqrt{5-2\sqrt{3}-1}}\)
\(=\sqrt{6+2\cdot\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)
Cho sửa phần mẫu số của câu trên thành \(\sqrt{6}+\sqrt{2}\)
\(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-|2\sqrt{3}+1|}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{4+2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+|\sqrt{3}-1|}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{2+\sqrt{3}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{\sqrt{2}.\sqrt{4+2\sqrt{3}}}{\sqrt{2}\left(\sqrt{3}+1\right)}\)
\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{3}+1}\)
\(=\frac{\sqrt{3}+1}{\sqrt{3}+1}=1\)
= \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(\sqrt{3}+2\right)^2}}}}\)
= \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(\sqrt{3}+2\right)}}}\)
= \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{3}-20}}}\)
= \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)
= \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
= \(\sqrt{4+\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}\)
= \(\sqrt{4+\sqrt{5\left(\sqrt{3}+5-\sqrt{3}\right)}}\)
= \(\sqrt{4+\sqrt{25}}\)
= \(\sqrt{4+5}=3\)
\(a,\sqrt{4+2\sqrt{3}}-\sqrt{5+2\sqrt{6}}+\sqrt{2}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{2}\)
\(=\sqrt{3}+1-\sqrt{3}-\sqrt{2}+\sqrt{2}=1\)
\(b,\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}\)
\(=\sqrt{25}=5\)
a) \(A=\sqrt{4-\sqrt{15}}-\sqrt{2+\sqrt{3}}\)
\(\Rightarrow\)\(\sqrt{2}A=\sqrt{8-2\sqrt{15}}-\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{5}-\sqrt{3}-\left(\sqrt{3}+1\right)=\sqrt{5}-1\)
\(\Rightarrow\)\(A=\frac{\sqrt{5}-1}{\sqrt{2}}\)
b) tương tự câu a
c) \(\sqrt{6+2\sqrt{5-\sqrt{13+4\sqrt{3}}}}-\sqrt{6-2\sqrt{5+\sqrt{13-4\sqrt{3}}}}\)
\(=\sqrt{6+2\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}}-\sqrt{6-2\sqrt{5+\sqrt{\left(\sqrt{12}-1\right)^2}}}\)
\(=\sqrt{6+2\sqrt{5-\left(\sqrt{12}+1\right)}}-\sqrt{6-2\sqrt{5+\left(\sqrt{12}-1\right)}}\)
\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}-\sqrt{6-2\sqrt{4+2\sqrt{3}}}\)
\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}-\sqrt{6-2\sqrt{\left(\sqrt{3}+1\right)^2}}\)
\(=\sqrt{6+2\left(\sqrt{3}-1\right)}-\sqrt{6-2\left(\sqrt{3}+1\right)}\)
\(=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\left(\sqrt{3}+1\right)-\left(\sqrt{3}-1\right)=2\)
b) \(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)\(=\sqrt{4+\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}=\sqrt{4+5}=3\)