K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tính từng phép tính trong ngoặc ta được :

\(A= \frac{3}{4}. \frac{8}{9} . ....\frac{899}{900}\)

\(A=\frac{1.3}{2.2} .\frac{2.4}{3.3}.... \frac{29.31}{30.30}\)

Gộp các thừa số với sau được

\(A= \frac{(1.2.3.4....29)(3.4.5.6...31)}{(2.3.4...30)(2.3.4..30)}\)

\(A= \frac{31}{30.2} = \frac{31}{60}\)

8 tháng 4 2023

       A =          1 +   \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\) +.......+\(\dfrac{1}{3^{n-1}}\) + \(\dfrac{1}{3^n}\)  

3\(\times\) A  =  3  +  \(\dfrac{1}{3}\) +  \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+........+ \(\dfrac{1}{3^{n-1}}\)

3A - A =  3 + \(\dfrac{1}{3}\) - 1 - \(\dfrac{1}{3^n}\) 

    2A  = \(\dfrac{7}{3}\) - \(\dfrac{1}{3^n}\)

      A  = ( \(\dfrac{7}{3}\) - \(\dfrac{1}{3^n}\)): 2

     A =   \(\dfrac{7.3^{n-1}-1}{3^n}\) : 2

     A = \(\dfrac{7.3^{n-1}-1}{2.3^n}\)

 

 

8 tháng 4 2023

   B   =      \(\dfrac{1}{2}\) - \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\) - \(\dfrac{1}{2^4}\)+......+\(\dfrac{1}{2^{99}}\) - \(\dfrac{1}{2^{100}}\)

2B    =  2 - \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) -  \(\dfrac{1}{2^3}\)\(\dfrac{1}{2^4}\)-.......-\(\dfrac{1}{2^{99}}\)

2B + B = 2 - \(\dfrac{1}{2^{100}}\)

  3B     =  2 - \(\dfrac{1}{2^{100}}\)

    B     =   ( 2 - \(\dfrac{1}{2^{100}}\)): 3

    B     =     \(\dfrac{2.2^{100}-1}{2^{100}}\) : 3

    B     = \(\dfrac{2^{101}-1}{3.2^{100}}\)

\(A=\frac{1}{2}+\frac{-1}{7}-\frac{-1}{13}+\frac{-1}{13}-\frac{-2}{5}+\frac{-11}{21}+\frac{1}{10}\)

\(A=\frac{5}{10}-\frac{3}{21}+\frac{1}{13}-\frac{1}{13}+\frac{4}{10}-\frac{11}{21}+\frac{1}{10}\)

\(A=\left(\frac{5+4+1}{10}\right)+\left(\frac{-3}{21}-\frac{11}{21}\right)+\left(\frac{1}{13}-\frac{1}{13}\right)\)

\(A=1+\frac{-2}{3}=\frac{3-2}{3}=\frac{1}{3}\)

Bài 2: 

b) Gọi \(d\inƯC\left(21n+4;14n+3\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(21n+4;14n+3\right)=1\)

hay \(\dfrac{21n+4}{14n+3}\) là phân số tối giản(đpcm)

Bài 1: 

a) Ta có: \(A=1+2-3-4+5+6-7-8+...-299-300+301+302\)

\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(297+298-299-300\right)+301+302\)

\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)+603\)

\(=75\cdot\left(-4\right)+603\)

\(=603-300=303\)

Bài 2: 

a) Vì tổng của hai số là 601 nên trong đó sẽ có 1 số chẵn, 1 số lẻ

mà số nguyên tố chẵn duy nhất là 2

nên số lẻ còn lại là 599(thỏa ĐK)

Vậy: Hai số nguyên tố cần tìm là 2 và 599

4 tháng 4 2021

b,Gọi ƯCLN(21n+4,14n+3)=d

21n+4⋮d ⇒42n+8⋮d

14n+3⋮d ⇒42n+9⋮d

(42n+9)-(42n+8)⋮d

1⋮d ⇒ƯCLN(21n+4,14n+3)=1

Vậy phân số 21n+4/14n+3 là phân số tối giản

 

6 tháng 5 2015

A=(ghi lại biieur thức)

2A=2+1+1/2+1/2^2+….+1/2^2011

2A-A=A=(2+1+1/2+1/2^2+….+1/2^2011)-(1+1/2+1/2^2+...+1/2^2012)

A=2-1/2^2012

6 tháng 5 2015

1/2 A= 1/2+1/2^2+1/2^3+1/2^4+...........+1/2^2013

=>A-1/2A= 1 -1/2^2013

=>1/2A=1 -1/2^2013

=>A=(1 - 1/2^2013) : 1/2

20 tháng 4 2016

2A = 2 + 1 + 1/2 + 1/22 + 1/2+ ... + 1/22011

mà A = 1 + 1/2 + 1/22 + 1/23 + ... + 1/22012

2A - A = 2 - 1/22012

A = 2 - 1/22012

20 tháng 4 2016

Ta có A=1+1/2+1/2^2+1/2^3+........+1/2^2012

=>2A=2+1+1/2+1/2^2+.......+1/2^2011

=>2A-A=(2+1+1/2+1/2^2+.....+1/2^2011)-(1+1/2+1+1/2^2+1/2^3+.....+1/2^2012)

=>A=\(2-\frac{1}{2^{2012}}\)

\(A=\frac{2^{2013-1}}{2^{2012}}\)