Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{AB\cdot AC}{2}\)
nên \(BC\cdot AH=AB\cdot AC\)
2:
a: Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AC^2=CH\cdot BC\)
a: Xét ΔABC có:
AB+AC>BC(BĐT tam giác)
b: Xét ΔABC có AB+AC>BC(BĐT tam giác)
d: (AB+AC)^2=AB^2+AC^2+2*AB*AC
=BC^2+2*AH*BC<BC^2+2*AH*BC+AH^2=(BC+AH)^2
=>AB+AC<AH+BC
Ta có\(\frac{1}{AH^2}\)=\(\frac{1}{AB^2}\)+\(\frac{1}{AC^2}\) \(\Leftrightarrow\)\(\frac{1}{AH^2}\)=\(\frac{AC^2+AB^2}{AC^2AB^2}\)=\(\frac{AC^2+AB^2}{\left(AC.AB\right)^2}\)(1)
VÌ tam giacABC vuông tại A nên
+ \(AC^2+AB^2=BC^2\)
+\(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)\(\Leftrightarrow\)\(AB.AC=AH.BC\)
VẬY(1)\(\Leftrightarrow\) \(\frac{\left(AB.AC\right)^2}{AH^2}=BC^2\)\(\Leftrightarrow\frac{\left(AH.BC\right)^2}{AH^2}=BC^2\) \(\Leftrightarrow\frac{AH^2.BC^2}{AH^2}=BC^2\)
\(\Leftrightarrow BC^2=BC^2\)(LUÔN ĐÚNG)
\(\Rightarrow\) ĐFCM
xét tan giác ABH vuông tại H suy ra AH <AB (quan hệ giữa đường xiên và đường vuông góc)
xét tam giác AHC vuông tại H suy ra AH<AC (quan hệ giữa đường xiên và đường vuông góc)
theo câu 1 ta có AH<AB và AH<AC suy ra 2AH<AB+AC
suy ra AH <1/2(AB+AC)
a: Ta có: ΔAHC vuông tại H
nen AC>AH
Ta co: ΔAHB vuông tạiH
nên AB>AH
b: AB+AC>HA+AH=2HA
nên AH<1/2(AB+AC)
1/ ΔABC vuông tại B. Áp dụng định lý Pitago ta có:
AC2 = AB2 + BC2
=> AB2 = AC2 - BC2 = 122 - 82 (cm)
=> AB2 = 144 - 64 = 80 (cm)
=> \(AB=\sqrt{80}\left(cm\right)\)
2/ Ta có: BH + HC = BC
=> 2cm + 8cm = BC
=> 10cm = BC
Hay: BC = 10cm
ΔABC vuông tại A. Áp dụng định lý Pitago ta có:
BC2 = AB2 + AC2
=> AC2 = BC2 - AB2 = 102 - 42 (cm)
=> AC2 = 100 - 16 = 84 (cm)
=> \(AC=\sqrt{84}\) (cm)
ΔABH vuông tại H. Áp dụng định lý Pitago ta có:
AB2 = AH2 + BH2
=> AH2 = AB2 - BH2 = 42 - 22 = 16 - 4 (cm)
=> AH2 = 12 (cm)
=> \(AH=\sqrt{12}\left(cm\right)\)
Vậy:......................
3/ Xét ΔABM và ΔACM ta có:
AB = AC (ΔABC cân tại A)
BM = CM (M là trung điểm của BC)
AM: cạnh chung
=> ΔABM = ΔACM (c - c - c)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)
Mà 2 góc này lại là 2 góc kề bù
=> \(\widehat{AMB}=\widehat{AMC}=180^0:2=90^0\)
ΔABM vuông tại M. Áp dụng định lý Pitago ta có:
AB2 = AM2 + BM2
=> BM2 = AB2 - AM2 = 102 - 62 (cm)
=> BM2 = 100 - 36 = 64 (cm)
=> \(BM=\sqrt{64}=8\left(cm\right)\)
Vì: M là trung điểm của BC nên
BC = 2. BM
=> BC = 2. 8 = 16 (cm)
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{AC^2+AB^2}{AB^2\cdot AC^2}=\dfrac{BC^2}{AB^2\cdot AC^2}\)
\(\Leftrightarrow AH^2\cdot BC^2=AB^2\cdot AC^2\)
\(\Leftrightarrow AH^2\left(AB^2+AC^2\right)=AB^2\cdot AC^2\)
=>ĐPCM
Chọn B