K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017

\(B=\dfrac{x-2}{x+2}\cdot\left(\dfrac{5x+10}{7x-14}+\dfrac{x-2}{3x-6}\right)+\dfrac{3\left(x^2-4\right)}{2x^2-8x+8}\)

\(=\dfrac{x-2}{x+2}\cdot\left(\dfrac{5x+10}{7\left(x-2\right)}+\dfrac{x-2}{3\left(x-2\right)}\right)+\dfrac{3\left(x-2\right)\left(x+2\right)}{2\left(x^2-4x+4\right)}\)

\(=\dfrac{x-2}{x+2}\cdot\left(\dfrac{5x+10}{7\left(x-2\right)}+\dfrac{1}{3}\right)+\dfrac{3\left(x-2\right)\left(x+2\right)}{2\left(x-2\right)^2}\)

\(=\dfrac{x-2}{x+2}\cdot\dfrac{3\left(5x+10\right)+7\left(x-2\right)}{21\left(x-2\right)}+\dfrac{3\left(x+2\right)}{2\left(x-2\right)}\)

\(=\dfrac{1}{x+2}\cdot\dfrac{15x+30+7x-14}{21}+\dfrac{3x+6}{2\left(x-2\right)}\)

\(=\dfrac{22x+16}{21\left(x+2\right)}+\dfrac{3x+6}{2\left(x-2\right)}\)

\(=\dfrac{2\left(x-2\right)\left(22x+16\right)+21\left(x+2\right)\left(3x+6\right)}{42\left(x+2\right)\left(x-2\right)}\)

\(=\dfrac{\left(2x-4\right)\left(22x+16\right)+\left(21x+42\right)\left(3x+6\right)}{42\left(x^2-4\right)}\)

\(=\dfrac{44x^2+32x-88x-64+63x^2+126x+126x+252}{42x^2-168}\)

\(=\dfrac{107x^2+196x+188}{42x^2-168}\)

11 tháng 7 2017

\(D=\dfrac{x-2}{x+2}.\left(\dfrac{5x+10}{7x-14}+\dfrac{x-2}{3x-6}\right)+\dfrac{3x^2-12}{2x^2-8x+8}\)

\(D=\dfrac{x-2}{x+2}.\left(\dfrac{5\left(x+2\right)}{7\left(x-2\right)}+\dfrac{x-2}{3\left(x-2\right)}\right)+\dfrac{3\left(x^2-4\right)}{2\left(x^2-4x+4\right)}\)

\(D=\dfrac{x-2}{x+2}.\dfrac{5\left(x+2\right)}{7\left(x-2\right)}+\dfrac{x-2}{3\left(x-2\right)}.\dfrac{x-2}{x+2}+\dfrac{3\left(x^2-4\right)}{2\left(x^2-4x+4\right)}\)

\(D=\dfrac{5}{7}+\dfrac{x-2}{2\left(x+2\right)}+\dfrac{3\left(x-2\right)\left(x+2\right)}{2\left(x-2\right)^2}\)

\(D=\dfrac{5}{7}+\dfrac{x-2}{2\left(x+2\right)}+\dfrac{3\left(x+2\right)}{2\left(x-2\right)}\)

\(D=\dfrac{5}{7}-\dfrac{-\left(x-2\right)}{2\left(x-2\right)}+\dfrac{3\left(x+2\right)}{2\left(x-2\right)}\)

\(D=\dfrac{5}{7}-\dfrac{-\left(x-2\right)+3x+2}{2\left(x-2\right)}\)

\(D=\dfrac{5}{7}-\dfrac{2x+4}{2\left(x-2\right)}\)

\(D=\dfrac{5}{7}+\dfrac{2\left(x-2\right)}{2\left(x-2\right)}=\dfrac{5}{7}+\dfrac{x-2}{x-2}\)

\(D=\dfrac{5}{7}+1=\dfrac{12}{7}\)

Vậy \(D=\dfrac{12}{7}\)

a: \(P=\left(\dfrac{3x+6}{2\left(x^2+4\right)}-\dfrac{2x^2-x-10}{\left(x+1\right)\left(x^2+1\right)}\right):\left(\dfrac{10\left(x^2-1\right)+3\left(x^2+1\right)\left(x-1\right)-6\left(x+1\right)\left(x^2+1\right)}{\left(x^2+1\right)\left(x+1\right)\left(x-1\right)\cdot2}\right)\cdot\dfrac{2}{x-1}\)

\(=\left(\dfrac{\left(3x+6\right)\left(x^3+x^2+x+1\right)-\left(2x^2+8\right)\left(2x^2-x-10\right)}{2\left(x^2+4\right)\left(x+1\right)\left(x^2+1\right)}\right)\cdot\dfrac{\left(x^2+1\right)\left(x-1\right)\left(x+1\right)\cdot2}{-3x^3+x^2-3x-13}\cdot\dfrac{2}{x-1}\)

\(=\dfrac{-x^4+11x^3+13x^2+17x+16}{\left(x^2+4\right)}\cdot\dfrac{2}{-3x^3+x^2-3x-13}\)

8 tháng 7 2017

\(a,2\left(5x+1\right)-7\left(3x-2\right)=4\left(2x-1\right)+3\left(2-x\right)\)

\(\Leftrightarrow10x+2-21x+14=8x-4+6-3x\)

\(\Leftrightarrow-16x=-14\)

\(\Rightarrow x=\dfrac{7}{8}\)

\(b,-4\left(\dfrac{1}{2}x-3\right)+\dfrac{7}{2}\left(2x-1\right)+x=5x\left(1-x\right)\)

\(\Leftrightarrow-2x+12+7x-\dfrac{7}{2}+x=5x-5x^2\)

\(\Leftrightarrow5x^2+x+\dfrac{17}{2}=0\)

Cái này không biết tách kiểu gì cho vừa nên bạn nhấn máy tính nhé

Mode 5 3 rồi lần lượt điền vào theo thứ tự trên thì

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{10}+\dfrac{13i}{10}\\x=-\dfrac{1}{10}-\dfrac{13i}{10}\end{matrix}\right.\)

8 tháng 7 2017

an thế nào hả bạn mk ko có bt an hộ mk đi limdim

23 tháng 1 2018

pt nào cho thì mới biết chứ bạn

28 tháng 12 2017

4.

\(\dfrac{x+1}{99}+\dfrac{x+3}{97}+\dfrac{x+5}{95}=\dfrac{x+7}{93}+\dfrac{x+9}{91}+\dfrac{x+11}{89}\\ \Rightarrow\left(\dfrac{x+1}{99}+1\right)+\left(\dfrac{x+3}{97}+1\right)+\left(\dfrac{x+5}{95}+1\right)=\left(\dfrac{x+7}{93}+1\right)+\left(\dfrac{x+9}{91}+1\right)+\left(\dfrac{x+11}{89}+1\right)\\ \Rightarrow\dfrac{x+100}{99}+\dfrac{x+100}{97}++\dfrac{x+100}{95}=\dfrac{x+100}{93}+\dfrac{x+100}{91}+\dfrac{x+100}{89}\\ \Rightarrow\left(x+100\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}-\dfrac{1}{93}-\dfrac{1}{91}-\dfrac{1}{89}\right)=0\\ \Leftrightarrow x+100=0\Leftrightarrow x=-100\)

29 tháng 12 2017

\(\text{1) }\dfrac{\left(2x-3\right)\left(2x+3\right)}{8}=\dfrac{\left(x-4\right)^2}{6}+\dfrac{\left(x-2\right)^2}{3}\\ \Leftrightarrow\dfrac{\left(2x-3\right)\left(2x+3\right)}{8}\cdot24=\left[\dfrac{\left(x-4\right)^2}{6}+\dfrac{\left(x-2\right)^2}{3}\right]24\\ \Leftrightarrow3\left(4x^2-9\right)=4\left(x^2-8x+16\right)+8\left(x^2-4x+4\right)\\ \Leftrightarrow12x^2-27=4x^2-32x+64+8x^2-32x+32\\ \Leftrightarrow12x^2-27=12x^2-64x+96\\ \Leftrightarrow12x^2-12x^2+64x=96+27\\ \Leftrightarrow64x=123\\ \Leftrightarrow x=\dfrac{123}{64}\\ \text{Vậy }S=\left\{\dfrac{123}{64}\right\}\\ \)

\(\text{2) }x+2-\dfrac{2x-\dfrac{2x-5}{6}}{15}=\dfrac{7x-\dfrac{x-3}{2}}{5}\\ \Leftrightarrow\left(x+2-\dfrac{2x-\dfrac{2x-5}{6}}{15}\right)15=\dfrac{7x-\dfrac{x-3}{2}}{5}\cdot15\\ \Leftrightarrow15x+30-2x-\dfrac{2x-5}{6}=21x-\dfrac{3x-9}{2}\\ \Leftrightarrow15x-2x-\dfrac{2x-5}{6}-21x+\dfrac{3x-9}{2}=-30\\ \Leftrightarrow-8x-\dfrac{2x-5}{6}+\dfrac{3x-9}{2}=-30\\ \Leftrightarrow\left(-8x-\dfrac{2x-5}{6}+\dfrac{3x-9}{2}\right)6=-30\cdot6\\ \Leftrightarrow-48x-2x+5+9x-27=-180\\ \Leftrightarrow-41x==-158\\ \Leftrightarrow x=\dfrac{158}{41}\\ \text{Vậy }S=\left\{\dfrac{158}{41}\right\}\)

\(\text{3) }1-\dfrac{x-\dfrac{1+x}{3}}{3}=\dfrac{x}{2}-\dfrac{2x-\dfrac{10-7}{3}}{2}\\ \Leftrightarrow\left(1-\dfrac{x-1-x}{3}\right)6=\left(\dfrac{x}{2}-\dfrac{2x-1}{2}\right)6\\ \Leftrightarrow6+2=-3x+3\\ \Leftrightarrow-3x=8-3\\ \Leftrightarrow-3x=5\\ \Leftrightarrow x=-\dfrac{5}{3}\\ \\ \text{Vậy }S=\left\{-\dfrac{5}{3}\right\}\)

AH
Akai Haruma
Giáo viên
10 tháng 7 2018

Lời giải:

ĐK:.....

\(P=\left[\frac{x^2-2x+4}{x-2}.\frac{1}{x^3+8}+\frac{x-2}{x^3+8}.\frac{x^2-2x+4}{x^2-4}\right].(x^2-4)\)

\(P=\left[\frac{x^2-2x+4}{x-2}.\frac{1}{(x+2)(x^2-2x+4)}+\frac{x-2}{(x+2)(x^2-2x+4)}.\frac{x^2-2x+4}{(x-2)(x+2)}\right](x^2-4)\)

\(P=\left[\frac{1}{(x-2)(x+2)}+\frac{1}{(x+2)^2}\right](x^2-4)\)

\(=1+\frac{x^2-4}{(x+2)^2}=1+\frac{x-2}{x+2}=\frac{2x}{x+2}\)

b) Với \(x=-\frac{1}{2}\Rightarrow P=\frac{-2}{3}\)