Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{19}{20}=\frac{1}{20}\)
\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)
\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}\)
\(B=\frac{1}{20}\)
Ta có :
\(\frac{x+1}{3}=\frac{-1}{y-2}\)\(\Rightarrow\)\(\left(x+1\right)\left(y-2\right)=\left(-1\right).3\)
\(\left(x+1\right)\left(y-2\right)=-3\)
TRƯỜNG HỢP 1 :
\(\hept{\begin{cases}x+1=1\\y-2=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=5\end{cases}}}\)
TRƯỜNG HỢP 2 :
\(\hept{\begin{cases}x+1=-1\\y-2=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)
TRƯỜNG HỢP 3 :
\(\hept{\begin{cases}x+1=3\\y-2=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}}\)
TRƯỜNG HỢP 4 :
\(\hept{\begin{cases}x+1=-3\\y-2=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-4\\y=1\end{cases}}}\)
Vậy ...
Tờ làm luôn, ko ghi đề nữa nhé
\(A=\frac{\frac{24}{12}-\frac{4}{12}+\frac{3}{12}}{\frac{24}{12}+\frac{2}{12}-\frac{3}{12}}\)
\(A=\frac{\frac{23}{12}}{\frac{23}{12}}=1\)
Vậy A=1
\(A=\frac{2-\frac{1}{3}+\frac{1}{4}}{2+\frac{1}{6}-\frac{1}{4}}\)\(=\frac{2-\frac{2}{6}+\frac{2}{8}}{2+\frac{2}{12}-\frac{2}{8}}\)\(=\frac{2\left(1-\frac{1}{6}+\frac{1}{8}\right)}{-2\left(1-\frac{1}{12}+\frac{1}{8}\right)}\)\(=-1\)
\(\frac{-6}{3}\left[x-\frac{1}{4}\right]=2x-1\)
\(-2x-\left[\frac{1}{4}.-2\right]=2x-1\)\
\(-2x-\frac{-1}{2}=2x-1\)
\(2x--2x=1-\frac{-1}{2}\)
\(\)\(4x=\frac{3}{2}\)
\(x=\frac{3}{2}:4\)
\(x=\frac{3}{8}\)
a) \(x=\frac{9}{10}\)
b) \(x=\frac{-4}{3}\)
c) \(x=\frac{1}{42}\)
d) \(x=\frac{-47}{10}\)
ko có thời gian nên mình chỉ cho đáp án thôi nhé
thông cảm cho mình ngen
đúng thì k đấy
chúc bạn học giỏi
\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)
\(>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
\(\Rightarrow S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}>\frac{2}{5}\)
Bài 1 :
Ta có :
\(A=\frac{10^{17}+1}{10^{18}+1}=\frac{\left(10^{17}+1\right).10}{\left(10^{18}+1\right).10}=\frac{10^{18}+10}{10^{19}+10}\)
Mà : \(\frac{10^{18}+10}{10^{19}+10}>\frac{10^{18}+1}{10^{19}+1}\)
Mà \(A=\frac{10^{18}+10}{10^{19}+10}\)nên \(A>B\)
Vậy \(A>B\)
Bài 2 :
Ta có :
\(S=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2013}\)
\(\Rightarrow S=\frac{2014-1}{2014}+\frac{2015-1}{2015}+\frac{2016-1}{2016}+\frac{2013+3}{2013}\)
\(\Rightarrow S=1-\frac{1}{2014}+1-\frac{1}{2015}+1-\frac{1}{2016}+1+\frac{3}{2013}\)
\(\Rightarrow S=4+\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)\)
Vì \(\frac{1}{2013}>\frac{1}{2014}>\frac{1}{2015}>\frac{1}{2016}\)nên \(\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)>0\)
Nên : \(M>4\)
Vậy \(M>4\)
Bài 3 :
Ta có :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{100^2}\)
Suy ra : \(A< \frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+....+\frac{1}{99.101}\)
\(\Rightarrow A< \frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{2.4}+......+\frac{2}{99.101}\right)\)
\(\Rightarrow A< \frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-......-\frac{1}{101}\right)\)
\(\Rightarrow A< \frac{1}{2}.\left[\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{99}\right)-\left(\frac{1}{3}+\frac{1}{4}+......+\frac{1}{101}\right)\right]\)
\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{100}-\frac{1}{101}\right)\)
\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}\right)\)
\(\Rightarrow A< \frac{3}{4}\)
Vậy \(A< \frac{3}{4}\)
Bài 4 :
\(a)A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2015.2017}\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{1}{2015.2017}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{2017}\right)\)
\(\Rightarrow A=\frac{1}{2}.\frac{2016}{2017}\)
\(\Rightarrow A=\frac{1008}{2017}\)
Vậy \(A=\frac{1008}{2017}\)
\(b)\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{x\left(x+2\right)}=\frac{1008}{2017}\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{x.\left(x+2\right)}=\frac{2016}{2017}\)
\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{x+2}=\frac{2016}{2017}\)
\(1-\frac{1}{x+2}=\frac{2016}{2017}\)
\(\Rightarrow\frac{1}{x+2}=1-\frac{2016}{2017}\)
\(\Rightarrow\frac{1}{x+2}=\frac{1}{2017}\)
\(\Rightarrow x+2=2017\)
\(\Rightarrow x=2017-2=2015\)
Vậy \(x=2015\)
a) \(\frac{1}{x}+\frac{y}{6}=\frac{1}{2}\)
\(\frac{1}{x}=\frac{1}{2}-\frac{y}{6}\)
\(\frac{1}{x}=\frac{3}{6}-\frac{y}{6}\)
\(\frac{1}{x}=\frac{3-y}{6}\)
\(\Rightarrow6=x.\left(3-y\right)\)
Lập bảng ta có :
3-y | 2 | 3 | -2 | -3 | 1 | 6 | -1 | -6 |
x | 3 | 2 | -3 | -2 | 6 | 1 | -6 | -1 |
y | 1 | 0 | 5 | 6 | 2 | -3 | 4 | 9 |
Vậy ...
b) tương tự câu a
c) \(\frac{x-1}{9}+\frac{1}{3}=\frac{1}{y+2}\)
\(\frac{x-1}{9}+\frac{3}{9}=\frac{1}{y+2}\)
\(\frac{x+2}{9}=\frac{1}{y+2}\)
\(\Rightarrow\left(x+2\right).\left(y+2\right)=9\)
x+2 | 3 | -3 | 1 | 9 | -1 | -9 |
y+2 | 3 | -3 | 9 | 1 | -9 | -1 |
x | 1 | -5 | -1 | 7 | -3 | -11 |
y | 1 | -5 | 7 | -1 | -11 | -3 |
Vậy ...
d) \(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\)
\(\frac{4}{y}=\frac{x}{3}-\frac{1}{5}\)
\(\frac{4}{y}=\frac{5x}{15}-\frac{3}{15}\)
\(\frac{4}{y}=\frac{5x-3}{15}\)
\(\Rightarrow4.15=y.\left(5x-3\right)\)
\(\Rightarrow60=y.\left(5x-3\right)\)
Lập bảng ta có :
nhiều tự làm