Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-4}+\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{x-4}+\frac{\sqrt{x}-10}{x-4}\)
\(A=\frac{x+2\sqrt{x}+x-3\sqrt{x}+2+\sqrt{x}-10}{x-4}\)
\(A=\frac{2x-8}{x-4}=\frac{2\left(x-4\right)}{x-4}=2\)
\(B=\left(13-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)-8\sqrt{20+2\sqrt{\left(3\sqrt{3}+4\right)^2}}\)
\(B=43+24\sqrt{3}-8\sqrt{20+6\sqrt{3}+8}\)
\(B=43+24\sqrt{3}-8\sqrt{28+6\sqrt{3}}\)
\(B=43+24\sqrt{3}-8\sqrt{\left(3\sqrt{3}+1\right)^2}\)
\(B=43+24\sqrt{3}-24\sqrt{3}-8\)
\(B=35\)
\(B=\frac{9-x}{\sqrt{x}+3}-\frac{x-6\sqrt{x}+9}{\sqrt{x}-3}-6\)(đk: x ≥ 0 và x ≠ 9)
\(B=\frac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\sqrt{x}+3}-\frac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)
\(B=\left(3-\sqrt{x}\right)-\left(\sqrt{x}-3\right)-6\)
\(B=3-\sqrt{x}-\sqrt{x}+3-6\)
\(B=-2\sqrt{x}\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}+\frac{x}{36-x}\)(đk: x ≥ 0 và x ≠ 36)
\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+6\right)-3\left(\sqrt{x-6}\right)-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{x+6\sqrt{x}-3\sqrt{x}+18-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3\sqrt{x}+18}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3(\sqrt{x}+6)}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3}{\sqrt{x}-6}\)
a/ \(Q=\left(\frac{\sqrt{x}-2+7}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right):\left(\frac{\sqrt{x}-1-\sqrt{x}+2}{\sqrt{x}-2}\right)\)
\(Q=\left(\frac{\sqrt{x}+5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right).\left(\sqrt{x}-2\right)\)
\(Q=\frac{\sqrt{x}+5}{\sqrt{x}+2}\)
b/ i, x= \(\sqrt{\left(5+\sqrt{2}\right)^2}-\sqrt{\left(4+\sqrt{2}\right)^2}=5+\sqrt{2}-4-\sqrt{2}=1\)
\(\Rightarrow Q=\frac{5+1}{2+1}=2\)
ii, x= \(\frac{\sqrt{2\left(2-\sqrt{3}\right)}}{2-\sqrt{3}}-\frac{\sqrt{2\left(2+\sqrt{3}\right)}}{2+\sqrt{3}}\)\(=\frac{\sqrt{4-2\sqrt{3}}}{2-\sqrt{3}}-\frac{\sqrt{4+2\sqrt{3}}}{2+\sqrt{3}}=\frac{\left(\sqrt{3}-1\right)\left(2+\sqrt{3}\right)-\left(\sqrt{3}+1\right)\left(2-\sqrt{3}\right)}{4-3}\)
\(=2\sqrt{3}+3-2-\sqrt{3}-2\sqrt{3}+3-2+3=5-\sqrt{3}\)
\(Q=\frac{\sqrt{5-\sqrt{3}}+5}{\sqrt{5-\sqrt{3}}+2}\)
Đến đây chưa nghĩ ra :D
Sửa chút đoạn sau cho bạn trên.
ii, \(x=\sqrt{\frac{2}{2-\sqrt{3}}}-\sqrt{\frac{2}{2+\sqrt{3}}}\)
\(=\sqrt{2}.\sqrt{2-\sqrt{3}}\left(2+\sqrt{3}\right)-\sqrt{2}.\sqrt{2+\sqrt{3}}\left(2-\sqrt{3}\right)\)
\(=2\sqrt{3}-\sqrt{3}-2+3-\left(2\sqrt{3}+2-3-\sqrt{3}\right)\)\(=2\)
\(\Rightarrow Q=\frac{\sqrt{2}+5}{\sqrt{2}+2}=\frac{8-3\sqrt{2}}{2}\) (Trục căn thức ở mẫu, lấy \(2-\sqrt{2}\) )