Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(63.1,2-21.3,6=0,9.7.10.1,2-21.3,6\)
\(=6,3.12-21.3,6\)
\(=0,9.7.4.3-7.3.0,9.4\)
\(=6,3.12-6,3.12\)
\(=0\)
\(\Rightarrow\frac{\left(1+2+...+100\right).\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+...+99-100}=\frac{\left(1+2+...+100\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)0}{1-2+3-4+...+99-100}=0\)
Vậy \(\frac{\left(1+2+...+100\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+...+99-100}=0\)
Bài giải
\(\frac{\left(1+2+3+...+100\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\cdot\left(63\cdot1,2-21\cdot3,6\right)}{1-2+3-4+...+99-100}\)
\(=\frac{\left(1+2+3+...+100\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\cdot\left(75,6-75,6\right)}{1-2+3-4+...+99-100}\)
\(=\frac{\left(1+2+3+...+100\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\cdot0}{1-2+3-4+...+99-100}\)
\(=\frac{0}{1-2+3-4+...+99-100}\)
\(=0\)
\(A=\frac{\left(1+2+3+...+100\right)\left(\frac{1}{4}+\frac{1}{6}-\frac{1}{2}\right)\left(63.1,2-21.3,6+1\right)}{1-2+3-4+....+99-100}\)
\(=\frac{\frac{100\left(100+1\right)}{2}\left(\frac{3+2-6}{12}\right)\left[63\left(1,2-1,2\right)+1\right]}{\left(1-2\right)+\left(3-4\right)+....+\left(99-100\right)}\)
\(=\frac{5050.\left(-\frac{1}{12}\right).1}{-1+\left(-1\right)+\left(-1\right)+...+\left(-1\right)}\)
\(=\frac{2525.\left(-\frac{1}{6}\right)}{-50}=\frac{101}{12}\)
\(A=\frac{\left(1+2+3+...+99+100\right)\cdot\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\left(63\cdot1,2-21\cdot3,6\right)}{1-2+3-4+...+99-100}\)
\(=\frac{\left(1+2+3+...+99+100\right)\cdot\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\left(75,6-75,6\right)}{1-2+3-4+...+99-100}\)
\(=\frac{\left(1+2+3+...+99+100\right)\cdot\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\cdot0}{1-2+3-4+...+99-100}\)
\(=0\)
Để ý ta thấy 63.1,2-21.3,6+1=0
=>A=0