K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2017

a)\(\sqrt{\dfrac{4}{9-4\sqrt{5}}}-\sqrt{\dfrac{4}{9+4\sqrt{5}}} \Leftrightarrow \dfrac{\sqrt{4}}{\sqrt{(2-\sqrt{5}})^{2}}-\dfrac{\sqrt{4}}{(2+\sqrt{5})^{2}} \Leftrightarrow \dfrac{2(2+\sqrt{5})}{(\sqrt{5}-2)(2+\sqrt{5})}-\dfrac{2(\sqrt{5}-2)}{(\sqrt{5}-2)(2+\sqrt{5})} \Leftrightarrow \dfrac{4+2\sqrt{5}-(2\sqrt{5}-4)}{4-5} \Leftrightarrow \dfrac{8}{-1} = -8\)b)\(\dfrac{\sqrt{8-4\sqrt{3}}}{\sqrt{2}} =\dfrac{\sqrt{2}\sqrt{8-4\sqrt{3}}}{\sqrt{2}\sqrt{2}} =\dfrac{\sqrt{16-8\sqrt{3}}}{2} =\dfrac{\sqrt{(2-2\sqrt{3})^{2}}}{2} =\dfrac{2\sqrt{3}-2}{2} =\dfrac{2(\sqrt{3}-1)}{2} =\sqrt{3}-1\)c)\(\sqrt{14-8\sqrt{3}}-\sqrt{24-12\sqrt{3}} =\sqrt{2}\sqrt{7-4\sqrt{3}}-\sqrt{2}\sqrt{12+6\sqrt{3}} =\sqrt{2}(\sqrt{(4-\sqrt{3})^{2}}-\sqrt{(3+\sqrt{3})^{2}}) =\sqrt{2}((4-\sqrt{3})-(3+\sqrt{3})) =\sqrt{2}(1-2\sqrt{3}) =\sqrt{2}-2\sqrt{6}\)

NV
25 tháng 6 2021

\(x=\dfrac{3\sqrt[3]{8-3\sqrt{5}}}{\sqrt[3]{57}}.\sqrt[3]{8+3\sqrt{5}}=\dfrac{3\sqrt[3]{\left(8-3\sqrt{5}\right)\left(8+3\sqrt[]{5}\right)}}{\sqrt[3]{57}}=\sqrt[3]{\dfrac{19}{57}}=\dfrac{1}{\sqrt[3]{3}}\)

\(y=\dfrac{\left(\sqrt[3]{3}+\sqrt[4]{2}\right)\left(\sqrt[3]{3}-\sqrt[4]{2}\right)}{\sqrt[3]{3}+\sqrt[4]{2}}+\dfrac{\left(\sqrt[4]{2}-\sqrt[3]{81}\right)\left(\sqrt[4]{2}+\sqrt[3]{81}\right)}{\sqrt[4]{2}-\sqrt[3]{81}}\)

\(=\sqrt[3]{3}-\sqrt[4]{2}+\sqrt[4]{2}+\sqrt[3]{81}=\sqrt[3]{3}+3\sqrt[3]{3}=4\sqrt[3]{3}\)

\(T=xy=\dfrac{4\sqrt[3]{3}}{\sqrt[3]{3}}=4\)

26 tháng 10 2023

a: \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)

\(=\sqrt{9-2\cdot3\cdot\sqrt{6}+6}+\sqrt{24-2\cdot2\sqrt{6}\cdot3+9}\)

\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)

\(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)

b: \(\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{14-6\sqrt{5}}\)

\(=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}\)

\(=\left|3+\sqrt{5}\right|+\left|3-\sqrt{5}\right|\)

\(=3+\sqrt{5}+3-\sqrt{5}=6\)

c: \(\dfrac{3}{2\sqrt{3}+3}+\dfrac{3}{2\sqrt{3}-3}\)

\(=\dfrac{3\left(2\sqrt{3}-3\right)+3\left(2\sqrt{3}+3\right)}{12-9}\)

\(=2\sqrt{3}-3+2\sqrt{3}+3=4\sqrt{3}\)

d: \(\sqrt{\left(\sqrt{3}+4\right)\cdot\sqrt{19-8\sqrt{3}}+3}\)

\(=\sqrt{\left(4+\sqrt{3}\right)\cdot\sqrt{\left(4-\sqrt{3}\right)^2}+3}\)

\(=\sqrt{\left(4+\sqrt{3}\right)\cdot\left(4-\sqrt{3}\right)+3}\)

\(=\sqrt{16-3+3}=\sqrt{16}=4\)

e: \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}+\dfrac{3}{3+\sqrt{6}}\)

\(=\dfrac{\sqrt{3}\left(3\sqrt{3}-2\right)}{\sqrt{2}\left(3\sqrt{3}-2\right)}+\dfrac{3\left(3-\sqrt{6}\right)}{3}\)

\(=\dfrac{\sqrt{6}}{2}+3-\sqrt{6}=3-\dfrac{\sqrt{6}}{2}\)

a) Ta có: \(\left(\sqrt{7}-\sqrt{2}\right)\cdot\sqrt{9+2\sqrt{14}}\)

\(=\left(\sqrt{7}-\sqrt{2}\right)\cdot\left(\sqrt{7}+\sqrt{2}\right)\)

=7-2

=5

d) Ta có: \(\dfrac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-\dfrac{6\sqrt{2}-4}{3-\sqrt{2}}\)

\(=2\sqrt{2}-\sqrt{7}+5\sqrt{7}-\dfrac{2\sqrt{2}\left(3-\sqrt{2}\right)}{3-\sqrt{2}}\)

\(=2\sqrt{2}+4\sqrt{7}-2\sqrt{2}\)

\(=4\sqrt{7}\)

9 tháng 5 2022

\(B=\sqrt{9+4\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)

\(B=\sqrt{\left(\sqrt{5}+2\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\)

\(B=\left|\sqrt{5}+2\right|+\left|\sqrt{5}-2\right|\)

\(B=\sqrt{5}+2+\sqrt{5}-2\)

\(B=2\sqrt{5}\)

 

9 tháng 5 2022

\(A=\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}\)

\(A=\left(\dfrac{\sqrt{12}-\sqrt{6}}{2\sqrt{2}-2}-\dfrac{6\sqrt{6}}{3}\right).\dfrac{1}{\sqrt{6}}\)

\(A=\left(\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-2\sqrt{6}\right).\dfrac{1}{\sqrt{6}}\)

\(A=\left(\sqrt{6}-2\sqrt{6}\right).\dfrac{1}{\sqrt{6}}\)

\(A=-\sqrt{6}.\dfrac{1}{\sqrt{6}}\)

\(A=-1\)

 

 

a: Ta có: \(\dfrac{8}{\left(\sqrt{5}+\sqrt{3}\right)^2}-\dfrac{8}{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\dfrac{8}{8+2\sqrt{15}}-\dfrac{8}{8-2\sqrt{15}}\)

\(=\dfrac{64-16\sqrt{15}-64-16\sqrt{15}}{4}\)

\(=\dfrac{-32\sqrt{15}}{4}=-8\sqrt{15}\)

b: Ta có: \(\dfrac{1}{4-3\sqrt{2}}-\dfrac{1}{4+3\sqrt{2}}\)

\(=\dfrac{4+3\sqrt{2}-4+3\sqrt{2}}{-2}\)

\(=-\dfrac{6\sqrt{2}}{2}=-3\sqrt{2}\)

19 tháng 8 2021

b) \(\dfrac{1}{4-3\sqrt{2}}-\dfrac{1}{4+3\sqrt{2}}=\dfrac{4+3\sqrt{2}-4+3\sqrt{2}}{\left(4-3\sqrt{2}\right)\left(4+3\sqrt{2}\right)}=\dfrac{6\sqrt{2}}{-2}=-3\sqrt{2}\)

c) \(\left(\dfrac{\sqrt{7}+3}{\sqrt{7}-3}-\dfrac{\sqrt{7}-3}{\sqrt{7}+3}\right):\sqrt{28}=\dfrac{\left(\sqrt{7}+3\right)^2-\left(\sqrt{7}-3\right)^2}{\left(\sqrt{7}-3\right)\left(\sqrt{7}+3\right)}:\sqrt{28}=\dfrac{16+6\sqrt{7}-16+6\sqrt{7}}{7-9}=\dfrac{12\sqrt{7}}{-2}=-6\sqrt{7}\)

24 tháng 6 2021

`c)root{3}{4}.root{3}{1-sqrt3}.root{6}{(sqrt3+1)^2}`

`=root{3}{4(1-sqrt3)}.root{3}{1+sqrt3}`

`=root{3}{4(1-sqrt3)(1+sqrt3)}`

`=root{3}{4(1-3)}=-2`

`d)2/(root{3}{3}-1)-4/(root{9}-root{3}{3}+1)`

`=(2(root{3}{9}+root{3}{3}+1))/(3-1)-(4(root{3}{3}+1))/(3+1)`

`=root{3}{9}+root{3}{3}+1-root{3}{3}-1`

`=root{3}{9}`

24 tháng 6 2021

`a)root{3}{8sqrt5-16}.root{3}{8sqrt5+16}`

`=root{3}{(8sqrt5-16)(8sqrt5+16)}`

`=root{3}{320-256}`

`=root{3}{64}=4`

`b)root{3}{7-5sqrt2}-root{6}{8}`

`=root{3}{1-3.sqrt{2}+3.2.1-2sqrt2}-root{6}{(2)^3}`

`=root{3}{(1-sqrt2)^3}-sqrt2`

`=1-sqrt2-sqrt2=1-2sqrt2`

 

7 tháng 7 2021

a, \(=>3-\sqrt{2}+\sqrt{50}=3-\sqrt{2}+5\sqrt{2}=3+4\sqrt{2}\)

b, \(=>\dfrac{\sqrt[3]{125.5}}{\sqrt[3]{5}}-\sqrt[3]{\left(-4\right).2}=\sqrt[3]{125}-\sqrt[3]{\left(-2\right)^3}\)

\(=5-\left(-2\right)=7\)

c, \(=>\sqrt{6}.\sqrt{\dfrac{6}{2}}-\sqrt{2}-3\sqrt{4.2}=\sqrt{6}.\sqrt{3}-\sqrt{2}-6\sqrt{2}\)

\(=\sqrt{18}-7\sqrt{2}=3\sqrt{2}-7\sqrt{2}=-4\sqrt{2}\)

d, \(=>\dfrac{\sqrt{3}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}-\dfrac{2}{\sqrt{3}-1}=\sqrt{3}-\dfrac{2}{\sqrt{3}-1}\)

\(=\dfrac{3-\sqrt{3}-2}{\sqrt{3}-1}=\dfrac{1-\sqrt{3}}{\sqrt{3}-1}=-1\)

a: \(=2\cdot\dfrac{4}{3}\sqrt{3}-3\cdot\dfrac{1}{9}\sqrt{3}-6\cdot\dfrac{2}{15}\sqrt{3}\)

\(=\dfrac{8}{3}\sqrt{3}-\dfrac{1}{3}\sqrt{3}-\dfrac{4}{5}\sqrt{3}=\dfrac{23}{15}\sqrt{3}\)

b: \(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(=2-\sqrt{3}+2+\sqrt{3}=4\)

c: \(=6\sqrt{3}-4\sqrt{3}+\dfrac{3}{5}\cdot5\sqrt{3}=2\sqrt{3}+3\sqrt{3}=5\sqrt{3}\)