Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\frac{125^{10}.8^{30}}{5^{29}.2^{60}}\) = \(\frac{5^{30}.2^{90}}{5^{29}.2^{60}}\) = ............
Kl ............
Xét \(x<4\Rightarrow |x-4|=4-x\)
\(|x-5|=5-x\)
Biểu thức \(A=4-x+5-x=9-2x\)
Xét \(4\leq x<5 \Rightarrow |x-4|=x-4\) và \(|x-5|=5-x\) thay vào \(A=1\)
Xét \(x\geq5\Rightarrow|x-4|=x-4\) và \(|x-5|=x-5\) thay vào \(A=2x-9\)
\(|x-5|\)luôn \(\ge0\)
\(\Rightarrow\hept{\begin{cases}|x-5|=x-5\\|x-5|=-\left(x-5\right)=-x+5\end{cases}}\)
\(|x-4|\)luôn \(\ge0\)
\(\Rightarrow\hept{\begin{cases}|x-4|=x-4\\|x-4|=-\left(x-4\right)=-x+4\end{cases}}\)
Ta có các trường hợp:
\(\hept{\begin{cases}\text{|x-5|+|x-4|}=\left(x-5\right)+\left(x-4\right)=x-5+x-4=2x-9\\\text{|x-5|+|x-4|}=\left(-x+5\right)+\left(x-4\right)=-x+5+x-4=1\end{cases}}\)
\(\hept{\begin{cases}\text{|x-5|+|x-4|}=\left(-x+4\right)+\left(x-5\right)=-x+4+x-5=-1\\\text{|x-5|+|x-4|}=\left(-x+4\right)+\left(-x+5\right)=-x+4-x-5=-2x-1\end{cases}}\)
Ta có: a)(x - 5).(2x +3) - (2x -1).(x +7) - (x -1).(x+2)
= 2x2 + 3x - 10x - 15 - 2x2 - 14x + x + 7 - x2 - 2x + x + 2
= -x2 - 21x - 6
a) 5A = 5 + 5^2 + 5^3 + 5^4 +...+ 5^51
=> 5A - A = 4A = 5^51 - 1
=> A = \(\frac{5^{51}-1}{4}\)
b) 3B = 3^100 - 3^99 -...- 3
=> 3B - B = 2B = 3^100 - 2.3^99 + 1
=> B = \(\frac{3^{100}-2\times3^{99}+1}{2}\)
a, 1+5+52+.....+550
=> 5(1+5+52+.....+550)=5+52+53.....+551
=>4(1+5+52+.....+550)=551-1
=>1+5+52+.....+550=(551-1):4
b,399-398-...-3-1
=399-(398+...+3+1)
=399-(399-1):2
(6x + 1)(x + 5) - (3x + 5)(2x - 10)
= (6x + 1)(x + 5) + 5(3x + 5)(x + 5)
= 5(x + 5)(6x + 1 + 3x + 5)
= 5(x + 5)(9x + 6)
Ta có: (6x +1).(x +5) - (3x + 5).(2x - 10)
= 6x2 + 30x + x + 5 - 6x2 + 30x - 10x + 50
= 51x + 55
Bài 2:
\(B=\dfrac{2^{15}\cdot5^8-2^5\cdot2^9\cdot5^9}{2^{16}\cdot5^7+2^{16}\cdot5^8}=\dfrac{2^{14}\cdot5^8\left(2-5\right)}{2^{16}\cdot5^7\left(1+5\right)}=\dfrac{5}{4}\cdot\dfrac{-3}{6}=\dfrac{5}{4}\cdot\dfrac{-1}{2}=-\dfrac{5}{8}\)
A=1+5+52+53+...+550
=> 5A=(5+52+53+...+550)+551
=> 5A-A=551-1
4A=551-1 => \(A=\frac{5^{51}-1}{4}\)
cảm ơn bạn nhé