Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{2x^2-2xy}{x^2+x-xy-y}\) \(\left(x\ne y;x\ne-1\right)\)
\(=\dfrac{2x\left(x-y\right)}{x\left(x+1\right)-y\left(x+1\right)}\)
\(=\dfrac{2x\left(x-y\right)}{\left(x-y\right)\left(x+1\right)}\)
\(=\dfrac{2x}{x+1}\)
b) \(\dfrac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}\)
\(=\dfrac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}\)
\(=\dfrac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)
\(=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{\left(x-y+z\right)\left(x+y+z\right)}\)
\(=\dfrac{x+y-z}{x-y+z}\)
x 2 +y 2 xy = 8 5 ⇒x 2 +y 2 = 5 8xy \Rightarrow P=\frac{\frac{8xy}{5}-2xy}{\frac{8xy}{5}+2xy}=\frac{8xy-10xy}{8xy+10xy}=\frac{-2}{18}=-\frac{1}{9}⇒P= 5 8xy +2xy 5 8xy −2xy = 8xy+10xy 8xy−10xy = 18 −2 =− 9 1
a) (x+3)(x^2-3x+9)-(54+x^3)
= x^3- 3x^2+9x+3x^2-9x+27-54-x63
= -27
b) (2x + y)(4x^2 – 2xy + y^2) – (2x – y)(4x^2+ 2xy + y^2)
= (2x + y)[(2x)^2 – 2x.y + y^2] – (2x – y)[(2x)^2 + 2x.y + y^2]
= [(2x)3^3+ y^3] – [(2x)^3 – y^3]
= (2x)^3 + y^3 – (2x)^3 + y^3
= 2y^3
a)(x+3)(X^2-3x+9)-(54+x^3)
= \(x^3\)+ \(3^3 \) - 54 -\(x^3\)
= 27- 54
= -27
b)(2x+y)(4x^2-2xy+y^2)-(2x-y)(4x^2+2xy+y^2)
= \((2x)^3\) + \(y^3\) - [\((2x)^3\) - \(y^3\) ]
= \(8x^3\) + \(y^3\) - \(8x^3\) + \(y^3\)
= \(2y^3\)
\(\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
\(=\dfrac{\left(-x+y-z\right)^2}{\left(x-y\right)^2-z^2}\)
\(=\dfrac{\left[-\left(x-y+z\right)\right]^2}{\left(x-y-z\right)\left(x-y+z\right)}\)
\(=\dfrac{x-y+z}{x-y-z}\)
\(\dfrac{1}{x^2+2xy+y^2}-\dfrac{1}{x^2-y^2}:\dfrac{4xy}{y^2-x^2}\) \(\left(x,y\ne0;x\ne\pm y\right)\)
\(=\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{y^2-x^2}.\dfrac{y^2-x^2}{4xy}\)
\(=\dfrac{1}{x^2+2xy+y^2}+\dfrac{1}{4xy}\)
\(=\dfrac{6xy+x^2+y^2}{4xy\left(x+y\right)^2}\)
Ta có: \(\dfrac{1}{x^2+2xy+y^2}-\dfrac{1}{x^2-y^2}:\dfrac{4xy}{y^2-x^2}\)
\(=\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\left(x+y\right)\left(x-y\right)}{4xy}\)
\(=\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{4xy}\)
\(=\dfrac{4xy}{4xy\left(x+y\right)^2}+\dfrac{x^2+2xy+y^2}{4xy\left(x+y\right)^2}\)
\(=\dfrac{x^2+6xy+y^2}{4xy\left(x+y\right)^2}\)