K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2020

\(Q_{\left(x\right)}=5x^2-2\left(x+1\right)+3x\left(x-2\right)+5\)

\(=5x^2-2x+2+3x^2-6x+6\)

\(=8x^2-8x+8\)

\(=8\left(x^2-x-1\right)\)

𝑳â𝒎 𝑵𝒉𝒊 chỗ \(5x^2-2x+2\)dòng thứ 2 bn quên đổi dấu nhé !

\(Q_{\left(x\right)}=5x^2-2\left(x+1\right)+3x\left(x-2\right)+5\)

\(=5x^2-2x-2+3x^2-6x+5\)

\(=8x^2-8x+3\)

\(=8\left(x^2+x-1\right)+13\)( chỗ này mk ko chắc đúng tại vì mk ko bt nữa  ) 

a) Đặt A(x)=0

\(\Leftrightarrow-4x-5=0\)

\(\Leftrightarrow-4x=5\)

hay \(x=-\dfrac{5}{4}\)

b) Đặt B(x)=0

\(\Leftrightarrow3\left(2x-1\right)-2\left(x+1\right)=0\)

\(\Leftrightarrow6x-3-2x-2=0\)

\(\Leftrightarrow4x=5\)

hay \(x=\dfrac{5}{4}\)

a: P(x)=6x^3-4x^2+4x-2

Q(x)=-5x^3-10x^2+6x+11

M(x)=x^3-14x^2+10x+9

b: \(C\left(x\right)=7x^4-4x^3-6x+9+3x^4-7x^3-5x^2-9x+12\)

=10x^4-11x^3-5x^2-15x+21

 

30 tháng 4 2023

\(a\\ -5x^2+3x.\left(x+2\right)=-5x^2+3x^2+6x=-2x^2+6x\\ b\\ -2x.\left(1-x^2\right)-2x^3=-2x+2x^3-2x^3=-2x\\ c\\ 4x.\left(x-1\right)-4.\left(x^2+2x-1\right)\\ =4x^2-4x-4x^2-8x+4=-12x+4\)

30 tháng 4 2023

\(d\\ 6x^3-2x^2.\left(-x^2-3x\right)=6x^3+2x^4+6x^3=2x^4+12x^3\\ e\\ 3x.\left(x-1\right)-\left(1+2x\right).5x\\ =3x^2-3x-5x-10x^2=-7x^2-8x\\ f\\ -5x^2-\left(x-6\right).\left(-2x^2\right)=-5x^2+2x^3-12x^2=2x^3-17x^2\)

12 tháng 5 2023

a, P(x)=(2x^3-x^3)+x^2+(3x-2x)+2=x^3+x^2+x+2
Q(x)=(3x^3-4x^3)+(5x^2-4x^2)+(3x-4x)+1=-x^3+x^2-x+1
b, M(x)=P(x)+Q(x)=x^3+x^2+x+2+(-x^3)+x^2-x+1=2x^2+3
N(x)=P(x)-Q(x)=x^3+x^2+x+2-(-x^3+x^2-x+1)=2x^3+2x+1
c, M(x)=2x^2+3
do x^2>=0 với mọi x=2x^2>=0
nên 2x^2+3>=3 với mọi x
để M(x) có nghiệm thì phải tồn tại x để M(x)=0 ( vô lý vì M(x)>=3 với mọi x)
do đó đa thức M(x) không có nghiệm

3 tháng 5 2023

\(a,P\left(x\right)=2x^2+4x+5x^3-6\\ =5x^3+2x^2+4x-6\\ Q\left(x\right)=3x+x-5x^2-1\\ =-5x^2+\left(3x+1\right)-1\\ =-5x^2+4x-1\)

\(b,P\left(x\right)+Q\left(x\right)=5x^3+2x^2+4x-6-5x^2+4x-1\\ =5x^3+\left(2x^2-5x^2\right)+\left(4x+4x\right)+\left(-6-1\right)\\ =5x^3-3x^2+8x-7\)

Vậy \(P\left(x\right)+Q\left(x\right)=5x^3-3x^2+8x-7\)

\(P\left(x\right)-Q\left(x\right)=5x^3+2x^2+4x-6-\left(-5x^3+4x-1\right)\\ =5x^3+2x^2+4x-6+5x^3-4x+1\\ =\left(5x^3+5x^3\right)+2x^2+\left(4x-4x\right)+\left(-6+1\right)\\ =10x^3+2x^2+0-5\\ =10x^3+2x^2-5\)

Vậy \(P\left(x\right)-Q\left(x\right)=10x^3+2x^2-5\)

a: \(P\left(x\right)=2x^3-x^3+x^2+3x-2x+2=x^3+x^2+x+2\)

\(Q\left(x\right)=3x^3-4x^3-4x^2+5x^2+3x-4x+1=-x^3+x^2-x+1\)

b: M(x)=P(x)+Q(x)

\(=x^3+x^2+x+2-x^3+x^2-x+1=2x^2+3\)

N(x)=P(x)-Q(x)

\(=x^3+x^2+x+2+x^3-x^2+x-1=2x^3+2x+1\)

c: Vì \(2x^2+3>0\forall x\)

nên M(x) vô nghiệm

8 tháng 3 2022

a, \(P\left(x\right)=x^3+x^2+x+2\)

\(Q\left(x\right)=-x^3+x^2-x+1\)

b, \(M\left(x\right)=x^3+x^2+x+2-x^3+x^2-x+1=2x^2+3\)

\(N\left(x\right)=x^3+x^2+x+2+x^3-x^2+x-1=2x^3+2x+1\)

c, giả sử \(M\left(x\right)=2x^2+3=0\)( vô lí )

vì 2x^2 >= 0 ; 2x^2 + 3 > 0 

Vậy giả sử là sai hay đa thức M(x) ko có nghiệm 

a: P(x)=x^3+x^2+x+2

Q(x)=-x^3+x^2-x+1

b: M(x)=P(x)+Q(x)

=x^3+x^2+x+2-x^3+x^2-x+1

=2x^2+3

N(x)=x^3+x^2+x+2+x^3-x^2+x-1

=2x^3+2x+1

c: M(x)=2x^2+3>=3>0 với mọi x

=>M(x) ko có nghiệm

31 tháng 8 2021

a, \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\\ =x^3+x^2+x+2\)

\(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\\ =-x^3+x^2-x+1\)

b) \(M\left(x\right)=x^3+x^2+x+2-x^3+x^2-x+1\\ =2x^2+3\)

\(N\left(x\right)=x^3+x^2+x+2+x^3-x^2+x-1\\ =2x^3+2x+1\)

c, Ta thấy \(2x^2\ge0,3>0\Rightarrow M\left(x\right)>0\)

\(\Rightarrow M\left(x\right)\) không có nghiệm

a: Ta có: \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)

\(=x^3+x^2+x+2\)

Ta có: \(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\)

\(=-x^3-4x^2-x+1\)

b: Ta có: M(x)=P(x)+Q(x)

\(=x^3+x^2+x+2-x^3-4x^2-x+1\)

\(=-3x^2+3\)

Ta có N(x)=P(x)-Q(x)

\(=x^3+x^2+x+2+x^3+4x^2+x-1\)

\(=2x^3+5x^2+2x+1\)

31 tháng 10 2019

Thu gọn Q(x) = x4 + 7x2 + 1

Khi đó R(x) = Q(x) - P(x) = 4x2 + 3x + 2. Chọn A