K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2018

Chậc :))) T còn cách khác đây =)))

\(\sqrt{x-1+2\sqrt{x-2}}-\sqrt{x-1-2\sqrt{x-2}}=1\)

\(\Leftrightarrow\left(\sqrt{x-1+2\sqrt{x-1}}\right)^2=\left(1+\sqrt{x-1-2\sqrt{x-2}}\right)^2\)

\(\Leftrightarrow x-1+2\sqrt{x-2}-x=2\sqrt{x-1-2\sqrt{x-2}}+x-2\sqrt{x-2}-x\)

\(\Leftrightarrow2\sqrt{x-2}-1=2\sqrt{x-1-2\sqrt{x-2}}-2\sqrt{x-2}\)

\(\Leftrightarrow4x-4\sqrt{x-2}-7=-8\sqrt{x-2}-8\sqrt{x-2}.\sqrt{x-2\sqrt{x-2}-1}+8x-12\)

\(\Leftrightarrow5-4\sqrt{x-2}-4x=-8\sqrt{x-2}-8\sqrt{x-2}.\sqrt{x-2\sqrt{x-2}-1}\)

\(\Leftrightarrow x=\frac{9}{4}\) (tmyk)

Giải các phương trình có chứa ẩn ở mẫu sau: a, \(\dfrac{x-3}{x-2}+\dfrac{x+2}{x}=2\) b, \(\left(x-2\right)\left(\dfrac{2}{3}x-6\right)=0\) d, \(\dfrac{x}{x+1}-\dfrac{2x-3}{x-1}=\dfrac{2x+3}{x^2-1}\) f, \(\dfrac{x-1}{x}+\dfrac{x-2}{x+1}=2\) g, \(\dfrac{x}{x-1}+\dfrac{x-1}{x}=2\) h, \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\) i, \(\dfrac{2}{x+1}-\dfrac{3}{x-1}=5\) j, \(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\) k, \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x-3}=1\) l,...
Đọc tiếp

Giải các phương trình có chứa ẩn ở mẫu sau:

a, \(\dfrac{x-3}{x-2}+\dfrac{x+2}{x}=2\)

b, \(\left(x-2\right)\left(\dfrac{2}{3}x-6\right)=0\)

d, \(\dfrac{x}{x+1}-\dfrac{2x-3}{x-1}=\dfrac{2x+3}{x^2-1}\)

f, \(\dfrac{x-1}{x}+\dfrac{x-2}{x+1}=2\)

g, \(\dfrac{x}{x-1}+\dfrac{x-1}{x}=2\)

h, \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\)

i, \(\dfrac{2}{x+1}-\dfrac{3}{x-1}=5\)

j, \(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\)

k, \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x-3}=1\)

l, \(\dfrac{2}{x+1}-\dfrac{1}{xx-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)

m, \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)

n, \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)

o, \(\dfrac{x-2}{x+2}+\dfrac{3}{x-2}=\dfrac{x^2-11}{x^2-4}\)

p, \(\dfrac{x+4}{x+1}+\dfrac{x}{x-1}=\dfrac{2x^2}{x^2-1}\)

z, \(\dfrac{2x}{x-1}+\dfrac{4}{x^2+2x-3}=\dfrac{2x-5}{x+3}\)

q, \(\dfrac{x^2-x}{x+3}-\dfrac{x^2}{x-3}=\dfrac{7x^2-3x}{9-x^2}\)

r, \(\dfrac{1}{x-3}+2=\dfrac{5}{x-1}+x\)

s, \(\dfrac{2}{x^2+4x-21}=\dfrac{3}{x-3}\)

3
1 tháng 5 2018

help me pls!!!

1 tháng 5 2018

giúp bạn cx hơi hảo tổn đó :))

7 tháng 5 2017

bài 1

\(ĐKXĐ:1+x\ne0\Rightarrow x\ne-1\)
\(\frac{3-7x}{1+x}=\frac{1}{2}\Rightarrow2\left(3-7x\right)=1+x\)
\(\Leftrightarrow6-14x=1+x\\ \Leftrightarrow-14x-x=1-6\\ \Leftrightarrow-15x=-5\\ \Leftrightarrow x=\frac{1}{3}\left(N\right)\)

28 tháng 11 2022

a: \(=\dfrac{4a^2-4a+1-4a^2-2a+6a+3}{\left(2a-1\right)\left(2a+1\right)}\)

\(=\dfrac{4}{\left(2a-1\right)\left(2a+1\right)}\)

b: \(=\dfrac{x-1-x-1+2x^2}{\left(x-1\right)\left(x+1\right)}=2\)

d: \(=\dfrac{x-5+6x}{x\left(x+3\right)}=\dfrac{7x-5}{x\left(x+3\right)}\)

e: \(=\dfrac{x^2-4+3}{x-2}=\dfrac{x^2-1}{x-2}\)

i: \(=\dfrac{x}{x\left(x-4\right)}-\dfrac{3}{5x}=\dfrac{1}{x-4}-\dfrac{3}{5x}\)

\(=\dfrac{5x-3x+12}{5x\left(x-4\right)}=\dfrac{2x+12}{5x\left(x-4\right)}\)

Bài 1:

ĐKXĐ: x≠1

Ta có: \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)

\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{4\left(x-1\right)}{\left(x^2+x-1\right)\left(x-1\right)}=0\)

\(\Leftrightarrow x^2+x+1+2x^2-5-4\left(x-1\right)=0\)

\(\Leftrightarrow x^2+x+1+2x^2-5-4x+4=0\)

\(\Leftrightarrow3x^2-3x=0\)

\(\Leftrightarrow3x\left(x-1\right)=0\)

Vì 3≠0

nên \(\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\)

Vậy: x=0

Bài 2:

ĐKXĐ: x≠2; x≠3; \(x\ne\frac{1}{2}\)

Ta có: \(\frac{x+4}{2x^2-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)

\(\Leftrightarrow\frac{x+4}{\left(x-2\right)\left(2x-1\right)}+\frac{x+1-\left(2x+5\right)}{\left(x-3\right)\left(2x-1\right)}=0\)

\(\Leftrightarrow\frac{x+4}{\left(x-2\right)\left(2x-1\right)}+\frac{x+1-2x-5}{\left(x-3\right)\left(2x-1\right)}=0\)

\(\Leftrightarrow\frac{\left(x+4\right)\left(x-3\right)}{\left(x-2\right)\left(2x-1\right)\left(x-3\right)}+\frac{\left(-x-4\right)\left(x-2\right)}{\left(x-3\right)\left(2x-1\right)\left(x-2\right)}=0\)
\(\Leftrightarrow x^2+x-12-x^2-2x+8=0\)

\(\Leftrightarrow-x-4=0\)

\(\Leftrightarrow-x=4\)

hay x=-4(tm)

Vậy: x=-4

Bài 3:

ĐKXĐ: x≠1; x≠-1

Ta có: \(\frac{x+1}{x-1}-\frac{x-1}{x+1}=3x\left(1-\frac{x-1}{x+1}\right)\)

\(\Leftrightarrow\frac{x+1}{x-1}-\frac{x-1}{x+1}=3x-\frac{3x\left(x-1\right)}{x+1}\)

\(\Leftrightarrow\frac{x+1}{x-1}-\frac{x-1}{x+1}-3x+\frac{3x\left(x-1\right)}{x+1}=0\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{3x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{3x\left(x-1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)-\left(x^2-2x+1\right)-3x\left(x^2-1\right)+3x\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow x^2+2x+1-x^2+2x-1-3x^3+3x+3x^3-6x^2+3x=0\)

\(\Leftrightarrow-6x^2+10x=0\)

\(\Leftrightarrow2x\left(-3x+5\right)=0\)

Vì 2≠0

nên \(\left[{}\begin{matrix}x=0\\-3x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\-3x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{5}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{5}{3}\right\}\)

Bài 4:

ĐKXĐ: x≠1; x≠-3

Ta có: \(\frac{2x}{x-1}+\frac{4}{x^2+2x-3}=\frac{2x-5}{x+3}\)

\(\Leftrightarrow\frac{2x\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}+\frac{4}{\left(x-1\right)\left(x+3\right)}-\frac{\left(2x-5\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}=0\)

\(\Leftrightarrow2x^2+6x+4-\left(2x^2-7x+5\right)=0\)

\(\Leftrightarrow2x^2+6x+4-2x^2+7x-5=0\)

\(\Leftrightarrow13x-1=0\)

\(\Leftrightarrow13x=1\)

hay \(x=\frac{1}{13}\)(tm)

Vậy: \(x=\frac{1}{13}\)

Bài 5:

ĐKXĐ: x≠1; x≠-2

Ta có: \(\frac{1}{x-1}-\frac{7}{x+2}=\frac{3}{x^2+x-2}\)

\(\Leftrightarrow\frac{x+2}{\left(x-1\right)\left(x+2\right)}-\frac{7\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}-\frac{3}{\left(x+2\right)\left(x-1\right)}=0\)

\(\Leftrightarrow x+2-7\left(x-1\right)-3=0\)

\(\Leftrightarrow x+2-7x+7-3=0\)

\(\Leftrightarrow-6x+6=0\)

\(\Leftrightarrow-6\left(x-1\right)=0\)

Vì -6≠0

nên x-1=0

hay x=1(ktm)

Vậy: x∈∅

Bài 6:

ĐKXĐ: x≠4; x≠2

Ta có: \(\frac{x+3}{x-4}+\frac{x-1}{x-2}=\frac{2}{6x-8-x^2}\)

\(\Leftrightarrow\frac{x+3}{x-4}+\frac{x-1}{x-2}-\frac{2}{6x-8-x^2}=0\)

\(\Leftrightarrow\frac{x+3}{x-4}+\frac{x-1}{x-2}-\frac{2}{-\left(x^2-6x+8\right)}=0\)

\(\Leftrightarrow\frac{x+3}{x-4}+\frac{x-1}{x-2}+\frac{2}{\left(x-4\right)\left(x-2\right)}=0\)

\(\Leftrightarrow\frac{\left(x+3\right)\left(x-2\right)}{\left(x-4\right)\left(x-2\right)}+\frac{\left(x-1\right)\left(x-4\right)}{\left(x-2\right)\left(x-4\right)}+\frac{2}{\left(x-4\right)\left(x-2\right)}=0\)

\(\Leftrightarrow x^2+x-6+x^2-5x+4+2=0\)

\(\Leftrightarrow2x^2-4x=0\)

\(\Leftrightarrow2x\left(x-2\right)=0\)

Vì 2≠0

nên \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\)

Vậy: x=0

Bài 7:

ĐKXĐ: x≠1; x≠-2; x≠-1

Ta có: \(\frac{1}{x-1}-\frac{7}{x+2}=\frac{3}{1-x^2}\)

\(\Leftrightarrow\frac{1}{x-1}-\frac{7}{x+2}+\frac{3}{x^2-1}=0\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}-\frac{7\left(x-1\right)\left(x+1\right)}{\left(x+2\right)\left(x-1\right)\left(x+1\right)}+\frac{3\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}=0\)

\(\Leftrightarrow x^2+3x+2-7\left(x^2-1\right)+3x+6=0\)

\(\Leftrightarrow x^2+3x+2-7x^2+7x+3x+6=0\)

\(\Leftrightarrow-6x^2+13x+8=0\)
\(\Leftrightarrow-6x^2+16x-3x+8=0\)

\(\Leftrightarrow2x\left(-3x+8\right)+\left(-3x+8\right)=0\)

\(\Leftrightarrow\left(-3x+8\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-3x+8=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3x=-8\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{8}{3}\\x=\frac{-1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{8}{3};\frac{-1}{2}\right\}\)

25 tháng 3 2020

\( 1)\dfrac{1}{{x - 1}} + \dfrac{{2{x^2} - 5}}{{{x^3} - 1}} = \dfrac{4}{{{x^2} + x + 1}}\\ DK:x \ne 1\\ \Leftrightarrow \dfrac{{{x^2} + x + 1 + 2{x^2} - 5}}{{{x^3} - 1}} = \dfrac{{4\left( {x - 1} \right)}}{{{x^3} - 1}}\\ \Leftrightarrow {x^2} + x + 1 + 2{x^2} - 5 = 4x - 4\\ \Leftrightarrow 3{x^2} - 3x = 0\\ \Leftrightarrow 3x\left( {x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\left( {tm} \right)\\ x = 1\left( {ktm} \right) \end{array} \right.\\ 2)\dfrac{{x + 4}}{{2{x^2} - 5x + 2}} + \dfrac{{x + 1}}{{2{x^2} - 7x + 3}} = \dfrac{{2x + 5}}{{2{x^2} - 7x + 3}}\\ + DK:x \ne \dfrac{1}{2};x \ne 2;x \ne 3\\ \Leftrightarrow \dfrac{{x + 4}}{{\left( {2x - 1} \right)\left( {x - 2} \right)}} + \dfrac{{x + 1}}{{\left( {x - 3} \right)\left( {2x - 1} \right)}} = \dfrac{{2x + 5}}{{\left( {x - 3} \right)\left( {2x - 1} \right)}}\\ \Leftrightarrow \left( {x + 4} \right)\left( {x - 3} \right) + \left( {x + 1} \right)\left( {x - 2} \right) = \left( {2x + 5} \right)\left( {x - 2} \right)\\ \Leftrightarrow {x^2} + x - 12 + {x^2} - x - 2 = 2{x^2} + x - 10\\ \Leftrightarrow x = - 4\left( {tm} \right)\\ 3)\dfrac{{x + 1}}{{x - 1}} - \dfrac{{x - 1}}{{x + 1}} = 3x\left( {1 - \dfrac{{x - 1}}{{x + 1}}} \right)\\ DK:x \ne \pm 1\\ \Leftrightarrow {\left( {x + 1} \right)^2} - {\left( {x - 1} \right)^2} = 3x\left( {x - 1} \right)\left( {x + 1 - x + 1} \right)\\ \Leftrightarrow {x^2} + 2x + 1 - {x^2} + 2x - 1 = 6x\left( {x - 1} \right)\\ \Leftrightarrow 4x = 6{x^2} - 6x\\ \Leftrightarrow 2x\left( {3x - 5} \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = \dfrac{5}{3} \end{array} \right.\left( {tm} \right) \)

Còn lại tương tự mà làm nhé!

16 tháng 9 2018

e, (x-1)(x2 + x + 1)-x(x+2)(x-2) = 5

x(x2 +x + 1 ) - (x2 + x +1 )- [ x (x2 - 4)] = 5

x3 +x2 +x - x2 - x - 1 - x3 +4x = 5

4x - 1 = 5

4x = 6

x =\(\dfrac{3}{2}\)

f, (x-1)3 - (x+3)(x2 - 3x +9 ) +3(x2 - 4) = 2

x - 3x2 +3x - 1 - [( x3 - 3x2 + 9x) + (3x2 - 9x +27)] = 2

x3 - 3x2 + 3x - 1 -x3 +3x2 -9x - 3x2 +9x - 27 +3x2 - 12 = 2

3x - 1 - 27 - 12 = 2

3x = 42

x = 14

16 tháng 9 2018

muốn tao trả lờ cho ko , mai đến lớp nhá

19 tháng 5 2017

\(\dfrac{x^2-5}{x^3+1}+\dfrac{\left(x+1\right)\cdot\left(x+2\right)}{x^3+1}+\dfrac{x^2-x+x}{x^3+1}\)

=\(\dfrac{x^2-5+\left(x+1\right)\cdot\left(x+2\right)+x^2-x+1}{x^3+1}\)

=\(\dfrac{x^2-5+x^2+2\cdot x+x+2+x^2-x+1}{x^3+1}\)

=\(\dfrac{3\cdot x^2+2\cdot x-2}{x^3+1}\)

mình cx ko bt còn rút gọn nữa hay ko đâu ak