K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2018

\(1.a,Q=\frac{x+3}{2x+1}-\frac{x-7}{2x+1}=\frac{x+3}{2x+1}+\frac{7-x}{2x+1}\)

            \(=\frac{x+3+7-x}{2x+1}=\frac{10}{2x+1}\)

\(b,\) Vì \(x\inℤ\Rightarrow\left(2x+1\right)\inℤ\)

Q nhận giá trị nguyên \(\Leftrightarrow\frac{10}{2x+1}\) nhận giá trị nguyên

                                \(\Leftrightarrow10⋮2x+1\)

                                \(\Leftrightarrow2x+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

Mà \(\left(2x+1\right):2\) dư 1 nên \(2x+1=\pm1;\pm5\)

\(\Rightarrow x=-1;0;-3;2\)

Vậy.......................

Bài 1: 

a: \(A=\dfrac{x+1+x}{x+1}:\dfrac{3x^2+x^2-1}{x^2-1}\)

\(=\dfrac{2x+1}{x+1}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{x-1}{2x-1}\)

b: Thay x=1/3 vào A, ta được:

\(A=\left(\dfrac{1}{3}-1\right):\left(\dfrac{2}{3}-1\right)=\dfrac{-2}{3}:\dfrac{-1}{3}=2\)

28 tháng 1 2020

a) Ta có: A = \(\left(\frac{x}{x-1}+\frac{x}{x^2-1}\right):\left(\frac{2}{x^2}-\frac{2-x^2}{x^3+x^2}\right)\)

A = \(\left(\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right):\left(\frac{2\left(x+1\right)}{x^2\left(x+1\right)}-\frac{2-x^2}{x^2\left(x+1\right)}\right)\)

A = \(\left(\frac{x^2+x+x}{\left(x-1\right)\left(x+1\right)}\right):\left(\frac{2x+2-2+x^2}{x^2\left(x+1\right)}\right)\)

A = \(\left(\frac{x^2+2x}{\left(x-1\right)\left(x+1\right)}\right):\left(\frac{x^2+2x}{x^2\left(x+1\right)}\right)\)

A = \(\frac{x\left(x+2\right)}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x^2\left(x+1\right)}{x\left(x+2\right)}\)

A = \(\frac{x^2}{x+1}\)

b) ĐKXĐ: x \(\ne\)\(\pm\)1; x \(\ne\)0; x \(\ne\)-2

Ta có: A = 4

<=> \(\frac{x^2}{x+1}=4\)

<=> x2 = 4(x + 1)

<=> x2 - 4x - 4 = 0

<=>(x2 - 4x + 4) - 8 = 0

<=> (x - 2)2 = 8

<=> \(\orbr{\begin{cases}x-2=\sqrt{8}\\x-2=-\sqrt{8}\end{cases}}\)

<=> \(\orbr{\begin{cases}x=2\sqrt{2}+2\\x=2-2\sqrt{2}\end{cases}}\)(tm)

Vậy ...

c) Ta có: A < 0

<=> \(\frac{x^2}{x+1}< 0\)

Do x2 \(\ge\)0 => x + 1 < 0

=> x < -1

Vậy để A < 0 thì x < -1 và x khác -2

24 tháng 12 2023

1

24 tháng 12 2023

1

1 tháng 3 2020

a) Ta thấy x=-2 thỏa mãn ĐKXĐ của B.

Thay x=-2 và B ta có :

\(B=\frac{2\cdot\left(-2\right)+1}{\left(-2\right)^2-1}=\frac{-3}{3}=-1\)

b) Rút gọn : 

\(A=\frac{3x+1}{x^2-1}-\frac{x}{x-1}\)

\(=\frac{3x+1-x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{-x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\)

Xấu nhỉ ??