K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2018

\(1.a,Q=\frac{x+3}{2x+1}-\frac{x-7}{2x+1}=\frac{x+3}{2x+1}+\frac{7-x}{2x+1}\)

            \(=\frac{x+3+7-x}{2x+1}=\frac{10}{2x+1}\)

\(b,\) Vì \(x\inℤ\Rightarrow\left(2x+1\right)\inℤ\)

Q nhận giá trị nguyên \(\Leftrightarrow\frac{10}{2x+1}\) nhận giá trị nguyên

                                \(\Leftrightarrow10⋮2x+1\)

                                \(\Leftrightarrow2x+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

Mà \(\left(2x+1\right):2\) dư 1 nên \(2x+1=\pm1;\pm5\)

\(\Rightarrow x=-1;0;-3;2\)

Vậy.......................

20 tháng 5 2016

a) Cho x- x + 5=0 =>x={ \(\frac{1}{2}+\frac{\sqrt{19}}{2}i;\frac{1}{2}-\frac{\sqrt{19}}{2}i\) }

Thay giá trị của x là \(\frac{1}{2}+\frac{\sqrt{19}}{2}i\)hoặc \(\frac{1}{2}-\frac{\sqrt{19}}{2}i\) vừa tìm được vào x- x+ 6x2- x sẽ luôn được kết quả là -5

=>-5 +a=0 => a=5

b) Cho x+2=0 => x=-2

Thay giá trị của x vào biểu thức 2x-  3x+ x sẽ được kết quả là -30

=> -30 + a=0 => a=30 

a) Cho 3n +1 =0 => n= \(\frac{-1}{3}\)

Thay n= \(\frac{-1}{3}\)vào biểu thức 3n+ 10n2 -5 sẽ được kết quả -4

Vậy n = -4

b) Cho n-1=0 => n=1

 Thay n=1 vào biểu thức 10n2 + n -10 sẽ được kết quả là 1

Vậy n = 1

20 tháng 9 2021

1) \(\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)\)

\(=\left(x+3\right).x^2-5\left(x+3\right)+\left(x+4\right)\left(x-1x^2\right)\)

\(=x^3+3x^2-5x-15+\left(x+4\right)\left(x-x^2\right)\)

\(=x^3+3x^2-5x-15-x^3+x^2-4x^2+4x\)

\(=3x^2-5x-15-3x^2+4x\)

\(=-x-15\)

20 tháng 9 2021

2) Đặt đa thức là \(N\left(x\right)\)ta được: \(3x^3+2x^2-x+k=N\left(x\right)\left(x-1\right)\)

Để \(3x^3+2x^2-x+K⋮x-1\Leftrightarrow x=1\)

Thay vào ta được

\(\Rightarrow3.1^3+2.1^2-1+K=0\)

\(\Rightarrow3+2-1+K=0\)

\(\Rightarrow K=-4\)

20 tháng 12 2020

a) x2 - 5x - y2 -5y

= ( x2 - y2 ) + ( -5x - 5y)

= ( x - y ) ( x + y) - 5( x + y )

= ( x + y ) ( x - y -5)

b) x3 + 2x2 - 4x - 8

= x2 ( x + 2 ) - 4 ( x + 2 )

= ( x +2 ) ( x2 -4 )

= ( x+2)2 ( x-2)

20 tháng 12 2020

Bai 2 : 

a, \(A=\left(x+3\right)^2+\left(x-2\right)^2-2\left(x+3\right)\left(x-2\right)\)

\(=x^2+6x+9+x^2-4x+4-2\left(x^2-2x+3x-6\right)\)

\(=2x^2+2x+13-2x^2-2x+12=25\)

b, \(B=\left(x-2\right)^2-x\left(x-1\right)\left(x-3\right)+3x^2-9x+8\)

\(=x^2-4x+4-x\left(x^2-3x-x+3\right)+3x^2-9x+8\)

\(=4x^2-13x+12-x^3+4x^2-3x=-16x+12-x^3\)

21 tháng 4 2020

1.Ta có: \(\left(x-3\right)^2-x+3=0\)

       \(\Leftrightarrow\left(x-3\right).\left[\left(x-3\right)-1\right]=0\)

       \(\Leftrightarrow\left(x-3\right).\left(x-3-1\right)=0\)

       \(\Leftrightarrow\left(x-3\right).\left(x-4\right)=0\)

       \(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\left(TM\right)\\x=4\left(TM\right)\end{cases}}\)

Vậy \(S=\left\{3,4\right\}\)