K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

\(E=22x-23-5x+2-3x+1\)

\(=14x-20\)

\(=14\cdot\dfrac{-2}{3}-20=\dfrac{-28}{3}-\dfrac{60}{3}=-\dfrac{88}{3}\)

=2x^2+3x-10x-15-2x^2+6x+x+7

=-8

23 tháng 6 2023

Cảm ơn nhìu ạ :3

NV
7 tháng 11 2021

\(A=2n^2\left(2n-1\right)-3\left(2n-1\right)+2=\left(2n^2-3\right)\left(2n-1\right)+2\)

Do \(\left(2n^2-3\right)\left(2n-1\right)⋮2n-1\)

\(\Rightarrow2⋮2n-1\)

\(\Rightarrow2n-1=Ư\left(2\right)\)

Mà 2n-1 luôn lẻ \(\Rightarrow2n-1=\left\{-1;1\right\}\)

\(\Rightarrow n=\left\{0;1\right\}\)

2.

\(Q=-\left(x^2+4x+4\right)-\left(y^2-2y+1\right)+7\)

\(Q=-\left(x+2\right)^2-\left(y-1\right)^2+7\le7\)

\(Q_{max}=7\) khi \(\left(x;y\right)=\left(-2;1\right)\)

Ta có : B = \(3x^2+x+5\)

\(=2x^2+x^2+x+\frac{1}{4}+\frac{19}{4}\)

\(=2x^2+\left(x+\frac{1}{2}\right)^2+\frac{19}{4}\)

Vì \(2x^2\ge0\forall x\)

     \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

Nên : \(B=2x^2+\left(x+\frac{1}{2}\right)^2+\frac{19}{4}\ge0+0+\frac{19}{4}=\frac{19}{4}\)

Vậy \(B_{min}=\frac{19}{4}\) hơ icos vấn đề 

26 tháng 6 2017

Câu b mình viết nhầm dấu \(\ge\)đáng lẽ đúng phải là \(\le\)

26 tháng 6 2017

a)

\(A=x^2+y^2-x+6y+10.\)

\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy \(MinA=\frac{3}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}}\)

b)

\(B=2x-2x^2-5\)

\(=-2\left(x^2-x+\frac{1}{4}\right)+2.\frac{1}{4}-5\)

\(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)

Vậy \(MaxB=-\frac{9}{2}\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

DT
23 tháng 10 2023

x - y = 2 => x = y + 2 thay vào bt C, ta đc :

C = 2(y+2)^2 - y

= 2(y^2 + 4y + 4) - y

= 2(y^2 + 7/2 .y + 2)

= 2(y+7/4)^2 - 17/8 ≥ -17/8

=> Min = -17/8 tại y = -7/4, x =1/4

17 tháng 7 2017

\(A=4x^2+4x-1=\left(2x\right)^2+2.2x.1+1^2-2=\left(2x+1\right)^2-2\)

Vì \(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2-2\ge-2\)

Dấu "=" xảy ra khi (2x+1)2=0 <=>2x+1=0<=>x=-1/2

Vậy minA=-2 khi x=-1/2

26 tháng 7 2023

ko biết