Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề yêu cầu gì hả bạn? Vẽ đồ thị thì thôi, mất thời gian lắm :D
Cần tìm m để hàm số đồng biến trên khoảng nào bạn? Hay đồng biến trên R? Cần có 1 miền cụ thể
Áp dụng bất đẳng thức Cô - si, ta có :
\(P\ge\frac{\sqrt{3\sqrt[3]{x^3y^3}}}{xy}+\frac{\sqrt{3\sqrt[3]{y^3z^3}}}{yz}+\frac{\sqrt{3\sqrt[3]{z^3x^3}}}{zx}\)
\(\Rightarrow P\ge\sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{zx}}\) (1)
Lại theo bất đẳng thức Cô si thì :
\(\sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{zx}}\ge3\sqrt[3]{\sqrt{\frac{27}{\left(xyz\right)^2}}}\) (2)
Vì \(xyz=1\) nên ta có :
\(\sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{zx}}\ge3\sqrt{3}\)
Khi \(x=y=z=1\Rightarrow P=3\sqrt{3}\)
Vậy giá trị nhỏ nhất của \(P=3\sqrt{3}\)
\(xy=1\Rightarrow y=\frac{1}{x}\)
\(M=f\left(x\right)=\frac{x^3}{1+\frac{1}{x}}+\frac{\left(\frac{1}{x}\right)^3}{1+x}=\frac{x^4}{x+1}+\frac{1}{x^3\left(x+1\right)}=\frac{x^7+1}{x^4+x^3}\)
\(f'\left(x\right)=\frac{7x^6\left(x^4+x^3\right)-\left(4x^3+3x^2\right).\left(x^7+1\right)}{\left(x^4+x^3\right)^2}=\frac{3x^{10}+4x^9-4x^3-3x^2}{\left(x^4+x^3\right)^2}=\frac{3x^2\left(x^8-1\right)+4x^3\left(x^6-1\right)}{\left(x^4+x^3\right)^2}\)
\(f'\left(x\right)=0\Rightarrow x=1\)
Dựa vào BBT ta thấy \(f\left(x\right)_{min}=f\left(1\right)=1\)
\(\left(\frac{2x-1}{x+2}\right)'=\frac{5}{\left(x+2\right)^2}>0\)
Vậy hàm số \(y=\frac{2x-1}{x+2}\) đồng biến trên R. Chọn A.
A. là hàm phân thức bậc nhất trên bậc nhất nên không đồng biến trên \(ℝ\).
B., D. là đa thức, có hệ số cao nhất âm nên cũng không thể đồng biến trên \(ℝ\).
C>: \(\left(x^3+2x+1\right)'=3x^2+2>0,\forall x\inℝ\).
Ta chọn C.