Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=xy-xz+2z-2y
B=2xy-2xz+22- yt2
C=xy-2yz+y2
bạn tự tính kết quả nha
a: \(A=\left(y-z\right)\left(x-2\right)\)
\(=\left(2-2\right)\cdot\left(1.007-0.06\right)=0\)
b: \(B=2\cdot18.3\cdot\left(24.6-10.6\right)+\left(2-24.6\right)\left(2+31.7\right)\)
\(=36.6\cdot14-761.62=-249.22\)
c: \(C=\left(x-y\right)\left(y+z\right)-y\left(x-y\right)\)
\(=\left(0.86-0.26\right)\left(0.26+1.5\right)-0.26\left(0.86-0.26\right)\)
\(=0.6\cdot1.5=0.9\)
Cách 3 chưa đọc, nhưng cả cách 1 lẫn cách 2 đều sai. Sai lầm là ko chú ý điều kiện \(\frac{x}{y}+\frac{y}{x}=t\Rightarrow\left|t\right|\ge2\)
\(P=\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)=t^2-3t-2\)
- Nếu \(t\le-2\Rightarrow P=\left(t+2\right)\left(t-5\right)+8\ge8\)
- Nếu \(t\ge2\Rightarrow P=\left(t-2\right)\left(t-1\right)-4\ge-4\)
So sánh 2 trường hợp ta kết luận được \(P_{min}=-4\) khi \(t=2\) hay \(x=y\)
Bác google được sinh ra để làm gì, đăng nhiều vc, google có hết mà ;v
Bài 1,2,3,4 đơn giản, tự làm :v
7) \(\dfrac{ab}{c^2}+\dfrac{bc}{a^2}+\dfrac{ca}{b^2}=\dfrac{abc}{c^3}+\dfrac{abc}{a^3}+\dfrac{abc}{b^3}=abc\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=abc.\dfrac{1}{3abc}=\dfrac{1}{3}\)
P/S: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)
5) ĐK: a>b>0
\(3a^2+3b^2=10ab\Leftrightarrow\left(a-3b\right)\left(3a-b\right)=0\)
Tự phân tích
Mà a>b>0=> Chọn a=3b
Thay vào
Bài 6 tương tự bài 5
Có bất mãn chỗ nào thì ib nha bạn :))
\(P=\dfrac{2}{x}-\left(\dfrac{x^2y}{xy\left(x-y\right)}+\dfrac{\left(x^2-y^2\right)\left(x-y\right)}{xy\left(x-y\right)}+\dfrac{xy^2}{xy\left(x-y\right)}\right).\dfrac{x-y}{x^2-xy+y^2}\)
\(P=\dfrac{2}{x}-\left(\dfrac{x^2y+x^3-x^2y-xy^2+y^3+xy^2}{x\left(x-y\right)}\right).\dfrac{x-y}{x^2-xy+y^2}\)\(P=\dfrac{2}{x}-\dfrac{x^3+y^3}{x\left(x-y\right)}.\dfrac{x-y}{x^2-xy+y^2}=\dfrac{2}{x}-\dfrac{\left(x-y\right)\left(x^2-xy+y^2\right)}{x\left(x-y\right)}.\dfrac{x-y}{x^2-xy+y^2}=\dfrac{2}{x}-\dfrac{x-y}{x}=\dfrac{2-x-y}{x}\)Vậy \(P=\dfrac{2-x-y}{x}\)
a. Để x , y xác định thì \(x\ne0\) ; x2 - xy khác 0 ; y2 - xy khác 0 ; x - y khác 0
=> x khác 0; x(x-y) khác 0; xy khác 0 ; y(y-x) khác 0
* Với x(x-y) khác 0 => x khác 0 hoặc x - y khác 0
=> x khác 0 hoặc x khác y
* y(y-x) khác 0 suy ra y khác 0 hoặc y - x khác 0
=> x khác y
Vậy để P xác định thì x và y khác 0 ; và x khác y
1. Đặt \(\left\{{}\begin{matrix}\left|x\right|=a\ge0\\\left|y\right|=b\ge0\end{matrix}\right.\) \(\Rightarrow a+b=6\Rightarrow b=6-a\)
Thế vào \(a^2+b^2=26\)
\(\Rightarrow a^2+\left(6-a\right)^2=26\)
\(\Leftrightarrow2a^2-12a+10=0\Rightarrow\left[{}\begin{matrix}a=1\\a=5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}b=5\\b=1\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(1;5\right);\left(5;1\right);\left(-1;5\right);\left(5;-1\right);\left(1;-5\right);\left(-5;1\right);\left(-1;-5\right);\left(-5;-1\right)\)
2. Ta có: \(\left(x+y\right)^2\ge4xy\) \(\forall x;y\)
\(\Rightarrow xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow P=x^2y^2\le\frac{\left(x+y\right)^4}{16}=1\)
Dấu "=" xảy ra khi \(x=y=1\)
Đặt a=x+y ; b=y+t ; c=t+x
Khi P=Q tức là: a2+b2+c2=ab+bc+ac
<=> 2(a2+b2+c2)=2(ab+bc+ac)
<=> 2a2+2b2+2c2=2ab+2bc+2ac
<=> (a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2) = 0
<=> (a-b)2+(b-c)2+(c-a)2 = 0
Dấu "=" xảy ra <=> a=b=c (đpcm)
Vậy .....