K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 4 2020

1. Đặt \(\left\{{}\begin{matrix}\left|x\right|=a\ge0\\\left|y\right|=b\ge0\end{matrix}\right.\) \(\Rightarrow a+b=6\Rightarrow b=6-a\)

Thế vào \(a^2+b^2=26\)

\(\Rightarrow a^2+\left(6-a\right)^2=26\)

\(\Leftrightarrow2a^2-12a+10=0\Rightarrow\left[{}\begin{matrix}a=1\\a=5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}b=5\\b=1\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(1;5\right);\left(5;1\right);\left(-1;5\right);\left(5;-1\right);\left(1;-5\right);\left(-5;1\right);\left(-1;-5\right);\left(-5;-1\right)\)

2. Ta có: \(\left(x+y\right)^2\ge4xy\) \(\forall x;y\)

\(\Rightarrow xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow P=x^2y^2\le\frac{\left(x+y\right)^4}{16}=1\)

Dấu "=" xảy ra khi \(x=y=1\)

30 tháng 6 2015

\(2P-2=2\left(xy+yz+zx\right)-2\left(x^2+y^2+z^2\right)+x^2\left(y-z\right)^2+y^2\left(z-x\right)^2+z^2\left(x-y\right)^2\)

\(=-\left(x-y\right)^2-\left(y-z\right)^2-\left(z-x\right)^2+x^2\left(y-z\right)^2+y^2\left(z-x\right)^2+z^2\left(x-y\right)^2\)

\(=\left(x-y\right)^2\left(z^2-1\right)+\left(y-z\right)^2\left(x^2-1\right)+\left(z-x\right)^2\left(y^2-1\right)\le0\)

\(\text{( Do }x^2;y^2;z^2\le1\text{)}\)

\(\Rightarrow2P\le2\Rightarrow P\le1\)

\(\text{Dấu bằng xảy ra khi và chỉ khi 1 trong 3 số bằng 1; 2 số còn lại bằng 0.}\)

 

2 tháng 12 2017

ib tui làm cho 

19 tháng 2 2018

Do z > 0 nên từ xy 2 z 2 + x 2 z + y = 3z 2 ⇒ xy 2 +\(\frac{x^2}{z}+\frac{y}{z^2}=3\)

Áp dụng AM­GM ta có:

(x 2y 2 + y 2 ) + (x 2 +\(\frac{x^2}{z^2}\))+(\(\frac{y^2}{z^2}+\frac{1}{z^2}\)) ≥ 2(xy 2 +\(\frac{x^2}{z}+\frac{y}{z^2}\))=6

...............

21 tháng 12 2016

mơn em iu nhìu nhắm nak.

21 tháng 12 2016

shit ~ pate tăng động -_-