K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2018

Mang hết bài tập lên hỏi à, sao nhiều thế

19 tháng 8 2018

Ơ thế liên quan l đến cậu à Thành? Hay nên gọi là Thánh chứ nhỉ? :) Có ai khiến cậu trả lời không mà kêu lắm :> Đấy là bài tập chỗ học thêm bên ngoài, đ' làm được thì lên hỏi thắc mắc làm l gì :> Đ' hỏi bài tập ở lớp thì thôi đừng ngồi chõ mồm vào :>

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

9 tháng 12 2018

\(\dfrac{x^2-yz}{\left(x+y\right)\left(x+z\right)}+\dfrac{y^2-xz}{\left(y+z\right)\left(x+y\right)}+\dfrac{z^2-xy}{\left(x+z\right)\left(z+y\right)}\)

\(=\dfrac{\left(x^2-yz\right)\left(y+z\right)+\left(y^2-xz\right)\left(x+z\right)+\left(z^2-xy\right)\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(\left\{{}\begin{matrix}\left(x^2-yz\right)\left(y+z\right)=x^2y+x^2z-y^2z-yz^2\\\left(y^2-xz\right)\left(x+z\right)=y^2x+y^2z-x^2z-xz^2\\\left(z^2-xy\right)\left(x+y\right)=z^2x+z^2y-x^2y-xy^2\end{matrix}\right.\)

Đa thức trên bằng 0

\(\dfrac{x^2}{\left(x-y\right)\left(x-z\right)}+\dfrac{y^2}{\left(y-x\right)\left(y-z\right)}+\dfrac{z^2}{\left(z-x\right)\left(z-y\right)}\)

\(=\dfrac{-x^2}{\left(x-y\right)\left(z-x\right)}+\dfrac{-y^2}{\left(x-y\right)\left(y-z\right)}+\dfrac{-z^2}{\left(z-x\right)\left(y-z\right)}\)

\(=\dfrac{-x^2\left(y-z\right)-y^2\left(z-x\right)-z^2\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

Xét: \(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)

\(=x^2y-x^2z+y^2z-xy^2+z^2\left(x-y\right)\)

\(\)\(=xy\left(x-y\right)-z\left(x^2-y^2\right)+z^2\left(x-y\right)\)

\(=\left(x-y\right)\left(xy-xz-yz+z^2\right)\)

\(=\left(x-y\right)\left[x\left(y-z\right)-z\left(y-z\right)\right]\)

\(=\left(x-y\right)\left(x-z\right)\left(y-z\right)\)

Thêm dấu - đằng trc nữa suy ra bt có giá trị bằng 1 :P

20 tháng 12 2017

a,

\(-\dfrac{x}{\left(x-y\right)\left(z-x\right)}-\dfrac{y}{\left(x-y\right)\left(y-z\right)}-\dfrac{z}{\left(z-x\right)\left(y-z\right)}\)

\(\dfrac{-x\left(y-z\right)-y\left(z-x\right)-z\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(\dfrac{-xy+xz-yz+xy-zx+yz}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

= 0

AH
Akai Haruma
Giáo viên
18 tháng 12 2017

Lời giải:

Đặt biểu thức cần tính là A

Ta có:

\(A=\frac{x^2}{(x-y)(x-z)}+\frac{y^2}{(y-z)(y-x)}+\frac{z^2}{(z-x)(z-y)}\)

\(A=\frac{-x^2}{(x-y)(z-x)}+\frac{-y^2}{(y-z)(x-y)}+\frac{-z^2}{(z-x)(y-z)}\)

\(A=\frac{-x^2(y-z)+(-y^2)(z-x)+(-z)^2(x-y)}{(x-y)(y-z)(z-x)}\)

\(\text{ tử số}=x^2(z-y)+y^2(x-z)+z^2(y-x)\)

\(=x^2(z-y)-y^2[(z-y)+(y-x)]+z^2(y-x)\)

\(=(z-y)(x^2-y^2)+(y-x)(z^2-y^2)\)

\(=(z-y)(x-y)(x+y)-(x-y)(z-y)(z+y)\)

\(=(x-y)(z-y)(x+y-z-y)=(x-y)(z-y)(x-z)=(x-y)(y-z)(z-x)\)

Do đó: \(A=\frac{(x-y)(y-z)(z-x)}{(x-y)(y-z)(z-x)}=1\)

13 tháng 3 2017

Quy đồng tính bình thường.

\(A=\dfrac{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}+2\left(\dfrac{1}{x-y}+\dfrac{1}{y-z}+\dfrac{1}{z-x}\right)\)\(=\dfrac{2x^2+2y^2+2z^2-2xy-2yz-2xz}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}+\dfrac{2yz+2xz+2xy-2x^2-2y^2-2z^2}{ }\)

=0

21 tháng 3 2017

mình nghĩ ra cách này ko biết đúng hay sai, nhưng mình sẽ cm cho bạn xem trước cái này để mình đảo lại trong quá trình làm bài luôn cho đỡ mất thời gian

\(\dfrac{1}{x-y}-\dfrac{1}{x-z}=\dfrac{x-z-x+y}{\left(x-y\right)\left(x-z\right)}=\dfrac{\left(y-z\right)}{\left(x-y\right)\left(x-z\right)}\)

thế nên sẽ đảo ngược lại trong bài này, vây ta sẽ có

\(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}=\dfrac{1}{x-y}-\dfrac{1}{x-z}\\ \dfrac{z-x}{\left(y-z\right)\left(x-y\right)}=\dfrac{1}{y-z}-\dfrac{1}{x-y}\\ \dfrac{x-y}{\left(z-x\right)\left(y-x\right)}=\dfrac{1}{z-x}-\dfrac{1}{y-z}\)

thay vào đề bài ta được

\(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(y-x\right)}\\ =\dfrac{1}{x-y}-\dfrac{1}{x-z}+\dfrac{1}{y-z}-\dfrac{1}{y-x}+\dfrac{1}{z-x}-\dfrac{1}{y-x}\\ =\dfrac{1}{x-y}+\dfrac{1}{x-y}+\dfrac{1}{y-z}+\dfrac{1}{y-z}+\dfrac{1}{z-x}+\dfrac{1}{z-x}\\ =\dfrac{2}{x-y}+\dfrac{2}{y-x}+\dfrac{2}{z-x}\left(đpcm\right)\)

vậy ...

mình nghĩ ra thì là như z, chúc may mắn :)

23 tháng 3 2017

bài này mk cũng làm dc ròi haha

thanks bạn nha

24 tháng 11 2017

a)

\(x+y+z=0\)

\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2xz=0\)

\(\Rightarrow x^2+y^2+z^2=-2\left(xy+yz+xz\right)\) (1)

Phân tích :

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)

\(=x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+x^2\)

\(=2\left(x^2+y^2+z^2\right)+\left[-2\left(xy+yz+xz\right)\right]\)(Áp dung (1)ta được :)

\(=2\left(x^2+y^2+z^2\right)+x^2+y^2+z^2\)

\(=3\left(x^2+y^2+z^2\right)\)

\(\Rightarrow P=\dfrac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

\(\Rightarrow P=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}\)

\(\Rightarrow P=\dfrac{1}{3}\)