Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2-6x=0\)
\(\Rightarrow2x.\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0:2\\x=0+3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy \(x\in\left\{0;3\right\}.\)
\(2x.\left(x+2\right)-3.\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right).\left(2x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\2x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0-2\\2x=3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3:2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=\frac{3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{-2;\frac{3}{2}\right\}.\)
\(x^3-16x=0\)
\(\Rightarrow x.\left(x^2-16\right)=0\)
\(\Rightarrow x.\left(x^2-4^2\right)=0\)
\(\Rightarrow x.\left(x-4\right).\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=0+4\\x=0-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
Vậy \(x\in\left\{0;4;-4\right\}.\)
Chúc bạn học tốt!
a) \(x^2-3x+4\)
\(=x^2-2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{7}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\forall x\)
b) \(x^2-5x+8\)
\(=x^2-2\cdot x\cdot\frac{5}{2}+\frac{25}{4}+\frac{7}{4}\)
\(=\left(x-\frac{5}{2}\right)^2+\frac{7}{4}>0\forall x\)
c) \(x^2+y^2+2x-4x-4y+5\)
\(=\left(x+y\right)^2-4\left(x+y\right)+4+1\)
\(=\left(x+y-2\right)^2+1>0\forall x\)
1) Sửa đề: \(x^3-x^2+2=0\)
\(\Leftrightarrow x^3+x^2-2x^2-2x+2x+2=0\)
\(\Leftrightarrow x^2\left(x+1\right)-2x\left(x+1\right)+2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-2x+2\right)=0\)(1)
Ta có: \(x^2-2x+2=\left(x^2-2x+1\right)+1=\left(x-1\right)^2+1\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+1\ge1\ne0\forall x\)(2)
Từ (1) và (2) suy ra \(x+1=0\)
hay x=-1
Vậy: x=-1
2) Ta có: \(4x^2-12x+5=0\)
\(\Leftrightarrow4x^2-2x-10x+5=0\)
\(\Leftrightarrow2x\left(2x-1\right)-5\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1\\2x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{5}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{2};\frac{5}{2}\right\}\)
3) Ta có: \(x^4+6x^2+8=0\)
\(\Leftrightarrow x^4+4x^2+2x^2+8=0\)
\(\Leftrightarrow x^2\left(x^2+4\right)+2\left(x^2+4\right)=0\)
\(\Leftrightarrow\left(x^2+4\right)\left(x^2+2\right)=0\)(3)
Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow x^2+4\ge4\ne0\forall x\)(4)
Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow x^2+2\ge2\ne0\forall x\)(5)
Từ (3), (4) và (5) suy ra phương trình \(x^4+6x^2+8=0\) vô nghiệm
Vậy: x∈∅
4) Ta có: \(x^3-x^2-21x+45=0\)
\(\Leftrightarrow x^3+5x^2-6x^2-30x+9x+45=0\)
\(\Leftrightarrow\left(x+5\right)\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-3\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=3\end{matrix}\right.\)
Vậy: x∈{-5;3}
1)⇔x2+1x-3x+3=0
⇔x(x+1)-3(x+1)=0
⇔(x+1)(x-3)=0
⇔x+1=0 hoặc x-3=0
⇔x=-1 hoặc x=3
4)⇔x(1+5x)=0
⇔x=0 hoặc 1+5x=0
⇔x=0 hoặc 5x=-1
⇔x=0 hoặc x=-0.2
\(\left(3x-2\right)\left(x+6\right)\left(x^2+5\right)=0\)
\(TH1:3x-2=0\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\)
\(TH2:x+6=0\Leftrightarrow x=-6\)
\(TH3:x^2+5=0\Leftrightarrow x^2=5\Leftrightarrow x=\sqrt{5}\)( ns vô nghiệm cx ko sai nha )
\(\left(2x+5\right)^2=\left(3x-1\right)^2\)
\(2x+5=3x-1\)
\(2x-3x=-1-5\)
\(-1x=-6\)
\(x=6\)
a) \(x^3-4x^2-9x+36=0\Leftrightarrow x^3-7x^2+12x+3x^2-21x+36=0\) \(x\left(x^2-7x+12\right)+3\left(x^2-7x+12\right)=0\Leftrightarrow\left(x+3\right)\left(x^2-7x+12\right)=0\) \(\Leftrightarrow\left(x+3\right)\left(x^2-7x+12\right)=0\Leftrightarrow\left(x+3\right)\left(x^2-3x-4x+12\right)=0\) \(\Leftrightarrow\left(x+3\right)\left(x\left(x-3\right)-4\left(x-3\right)\right)=0\Leftrightarrow\left(x+3\right)\left(x-4\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3=0\\x-4=0\\x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=4\\x=3\end{matrix}\right.\) vậy \(x=-3;x=4;x=3\)
b) \(5x^2-4\left(x^2-2x+1\right)-5=0\) \(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)
\(\Leftrightarrow x^2+8x-9=0\Leftrightarrow x^2-x+9x-9=0\)
\(\Leftrightarrow x\left(x-1\right)+9\left(x-1\right)\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+9=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-9\\x=1\end{matrix}\right.\) vậy \(x=-9;x=1\)
c) đề có sai o bn
d) \(x^3-3x+2=0\Leftrightarrow x^3+x^2-2x-x^2-x+2=0\)
\(\Leftrightarrow x\left(x^2+x-2\right)-\left(x^2+x-2\right)=0\Leftrightarrow\left(x-1\right)\left(x^2+x-2\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-x+2x-2\right)=0\Leftrightarrow\left(x-1\right)\left(x\left(x-1\right)+2\left(x-1\right)\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-1\right)=0\) \(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\x+2=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-2\\x=1\end{matrix}\right.\)
vậy \(x=1;x=-2\)
1. \(x^3-4x^2-9x+36=0\)
\(\Rightarrow x^2.\left(x-4\right)-9\left(x-4\right)=0\)
\(\Rightarrow\left(x^2-9\right)\left(x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-9=0\Rightarrow x\in\left\{3;-3\right\}\\x-4=0\Rightarrow x=4\end{matrix}\right.\)
Vậy ..........
2. \(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\Rightarrow5x^2-4\left(x^2-1\right)-5=0\)
\(\Rightarrow5x^2-4x^2+4-5=0\)
\(\Rightarrow x^2-1=0\)
\(\Rightarrow x^2=1\)
\(\Rightarrow x=\pm1\)
Vậy .......
3. \(x^3-3x+2=0\)
\(\Rightarrow x^3-4x+x+2=0\)
\(\Rightarrow x.\left(x^2-4\right)+x+2=0\)
\(\Rightarrow x.\left(x-2\right).\left(x+2\right)+x+2=0\)
\(\Rightarrow\left(x+2\right).\left(x^2-2x+1\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x-1\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x+2\right)=0\\\left(x-1\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
Vậy .......
1,=\(x^2-3x-2x^2+6x=-x^2+3x\)
2,=\(3x^2-x-5+15x=3x^2+14x-5\)
3,=\(5x+15-6x^2-6x=-6x^2-x+15\)
4,=\(4x^2+12x-x-3=4x^2+11x-3\)
5: =>(x+5)^3=0
=>x+5=0
=>x=-5
6: =>(2x-3)^2=0
=>2x-3=0
=>x=3/2
7: =>(x-6)(x-10)=0
=>x=10 hoặc x=6
8: \(\Leftrightarrow x^3-12x^2+48x-64=0\)
=>(x-4)^3=0
=>x-4=0
=>x=4
3) \(x^2-7x+6=0\)
\(\Leftrightarrow x^2-6x-x+6=0\)
\(\Leftrightarrow x\left(x-6\right)-\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)
S=\(\left\{6;1\right\}\)
\(\)
1 ) \(\left(x-4\right)^2-25=0\)
\(\Leftrightarrow\left(x-4-5\right)\left(x-4+5\right)=0\)
\(\Leftrightarrow\left(x-9\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-1\end{matrix}\right.\)
2 ) \(\left(x-3\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-3+x-1\right)\left(x-3-x+1\right)=0\)
\(\Leftrightarrow-2\left(2x-4\right)=0\)
\(\Leftrightarrow x=2.\)
3 ) \(\left(x^2-4\right)\left(2x+3\right)=\left(x^2-4\right)\left(x-1\right)\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x+3-x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=-4\end{matrix}\right.\)
4 ) \(\left(x^2-1\right)-\left(x+1\right)\left(2-3x\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-1-2+3x\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(4x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{3}{4}\end{matrix}\right.\)
5 ) \(x^3+x^2+x+1=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(loại\right)\\x=-1.\end{matrix}\right.\)
6 ) \(x^3+x^2-x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
7 ) \(2x^3+3x^2+6x+5=0\)
\(\Leftrightarrow2x^3+2x^2+x^2+x+5x+5=0\)
\(\Leftrightarrow2x^2\left(x+1\right)+x\left(x+1\right)+5\left(x+1\right)=0\)
\(\Leftrightarrow\left(2x^2+x+5\right)\left(x+1\right)=0\)
\(\Leftrightarrow x=-1.\)
8 ) \(x^4-4x^3-19x^2+106x-120=0\)
\(\Leftrightarrow x^4-4x^3-19x^2+76x+30x-120=0\)
\(\Leftrightarrow x^3\left(x-4\right)-19x\left(x-4\right)+30\left(x-4\right)=0\)
\(\Leftrightarrow\left(x^3-19x+30\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(x^3-8-19x+38\right)\left(x-4\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+4x+23\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
9 ) \(\left(x^2-3x+2\right)\left(x^2+15x+56\right)+8=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+7\right)\left(x+8\right)+8=0\)
\(\Leftrightarrow\left(x^2+7x-x-7\right)\left(x^2+8x-2x-16\right)+8=0\)
\(\Leftrightarrow\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8=0\)
Đặt \(x^2+6x-7=t\)
\(\Leftrightarrow t\left(t-9\right)+8=0\)
\(\Leftrightarrow t^2-9t+8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=8\\t=1\end{matrix}\right.\)
Khi t = 8 \(\Leftrightarrow x^2+6x-7=8\Leftrightarrow x^2+6x-15\Leftrightarrow\left[{}\begin{matrix}x=-3+2\sqrt{6}\\x=-3-2\sqrt{6}\end{matrix}\right.\)
Khi t = 1 \(\Leftrightarrow x^2+6x-7=1\Leftrightarrow x^2+6x-8=0\Leftrightarrow\left[{}\begin{matrix}x=-3+\sqrt{17}\\x=-3-\sqrt{17}\end{matrix}\right.\)
Vậy ........
`x^8+36x^4=0`
`<=>x^4(x^4+36)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x^4=0\\x^4+36=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^4=-36\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x\in\varnothing\end{matrix}\right.\)
__
`(x-5)^3 -x+5=0`
`<=> (x-5)^3 -(x-5)=0`
`<=> (x-5) [(x-5)^2 -1]=0`
`<=> (x-5)(x-5-1)(x-5+1)=0`
`<=>(x-5)(x-6)(x-4)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-6=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=6\\x=4\end{matrix}\right.\)
__
`5(x-2)-x^2+4=0`
`<=>5(x-2)-(x^2-4)=0`
`<=>5(x-2)-(x-2)(x+2)=0`
`<=>(x-2)(5-x-2)=0`
`<=>(x-2)(-x-3)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\-x-3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)