K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2016

\(x^3+6x^2+3x-10=0\)

\(x^3-3x^2+3x-1+9x^2-9=0\)

\(\left(x-1\right)^3+9\left(x^2-1\right)=0\)

\(\left(x-1\right)^3+9\left(x-1\right)\left(x+1\right)=0\)

\(\left(x-1\right)\left[\left(x-1\right)^2+9\left(x+1\right)\right]=0\)

\(\left(x-1\right)\left(x^2-2x+1+9x+9\right)=0\)

\(\left(x-1\right)\left(x^2+7x+10\right)=0\)

TH1:

\(x-1=0\)

\(x=1\)

TH2:

\(x^2+7x+10=0\)

\(x^2+2x+5x+10=0\)

\(x\left(x+2\right)+5\left(x+2\right)=0\)

\(\left(x+2\right)\left(x+5\right)=0\)

  • \(x+2=0\Rightarrow x=-2\)
  • \(x+5=0\Rightarrow x=-5\)

Vậy x = 1 hoặc x = - 2 hoặc x = - 5

6 tháng 7 2018

\(1.6x\left(x-10\right)-2x+20=0\)

\(6x\left(x-10\right)-2\left(x-10\right)=0\)

\(2\left(x-10\right)\left(3x-1\right)=0\)

⇔ x = 10 hoặc x = \(\dfrac{1}{3}\)

KL....

\(2.3x^2\left(x-3\right)+3\left(3-x\right)=0\)

\(3\left(x-3\right)\left(x^2-1\right)=0\)

\(x=+-1\) hoặc \(x=3\)

KL....

\(3.x^2-8x+16=2\left(x-4\right)\)

\(\left(x-4\right)^2-2\left(x-4\right)=0\)

\(\left(x-4\right)\left(x-6\right)=0\)

\(x=4\) hoặc \(x=6\)

KL.....

\(4.x^2-16+7x\left(x+4\right)=0\)

\(\text{⇔}4\left(x+4\right)\left(2x-1\right)=0\)

\(x=-4hoacx=\dfrac{1}{2}\)

KL.....

\(5.x^2-13x-14=0\)

\(x^2+x-14x-14=0\)

\(\text{⇔}\left(x+1\right)\left(x-14\right)=0\)

\(\text{⇔}x=14hoacx=-1\)

KL......

Còn lại tương tự ( dài quá ~ )

tích mình đi

ai tích mình 

mình tích lại 

thanks

28 tháng 7 2018

\(x\left(x-3\right)+x-3=0\)

\(\left(x-3\right)\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}}\)

KL:......................

\(x^3-5x=0\)

\(x\left(x^2-5\right)=0\)

Làm  tương tự như câu a

@_@ n...h..i......ề....u  q...u.....................á!

21 tháng 7 2016

ai giúp tôi với

13 tháng 2 2020
https://i.imgur.com/oYkvP8J.jpg
14 tháng 6 2018

C= \(6x^4-x^3-7^2+x+1\)

Ta thấy Các số hạng của từng bậc x, khi cộng lại bằng 0: 6+(-1)+(-7)+1+1=0

=> ta sẽ có một nhân tử là x-1.

Khi đó,

\(C=6x^4-6x^3+5x^3-5x^2-2x^2+2x-x+1\)

\(C=6x^3\left(x-1\right)+5x^2\left(x-1\right)-2x\left(x-1\right)-\left(x-1\right)\)

\(C=\left(x-1\right)\left(6x^3+5x^2-2x-1\right)\)

\(C=\left(x-1\right)\left(6x^3+5x^2-2x-1\right)\)

\(C=\left(x-1\right)\left(6x^2\left(x+1\right)-x\left(x+1\right)-\left(x+1\right)\right)\)

\(C=\left(x-1\right)\left(x+1\right)\left(6x^2-x-1\right)\)

Đến bước này, cái ngoặc cuối cùng là phương trình bậc hai, bạn có thể bấm máy đc.

14 tháng 6 2018

\(D=\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24\)

\(D=\left(x^2-5x\right)^2-2.5.\left(x^2-5x\right)+25-1\)

\(D=\left(x^2-5x-5\right)^2-1^2\)

\(D=\left(x^2-5x-5-1\right)\left(x^2-5x-5+1\right)\)

\(D=\left(x^2-5x-6\right)\left(x^2-5x-4\right)\)

Vì vế sau tách ra số hơi lẻ nên mình chỉ tách cái ngoặc đầu, nếu bạn muốn, bạn có thể tách cái ngoặc sau bằng cách bấm máy tính nhẩm nghiệm.

\(D=\left(x^2+x-6x-6\right)\left(x^2-5x-4\right)\)

\(D=\left(x\left(x+1\right)-6\left(x+1\right)\right)\left(x^2-5x-4\right)\)

\(D=\left(x+1\right)\left(x-6\right)\left(x^2-5x-4\right)\)

11 tháng 9 2019

a, \(x\left(x-2\right)+x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

b, \(x^3+x^2+x+1=0\)

\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\x^2=-1\left(voly\right)\end{cases}\Leftrightarrow}x=-1\)

c, \(2\left(x+3\right)-x^2-3x=0\)

\(\Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(2-x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\2-x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)

d, \(2x\left(3x-5\right)=10-6x\)

\(\Leftrightarrow6x^2-10x-10+6x=0\)

\(\Leftrightarrow\left(6x^2+6x\right)-\left(10x+10\right)=0\)

\(\Leftrightarrow6x\left(x+1\right)-10\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(6x-10\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\6x-10=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\6x=10\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\x=\frac{5}{3}\end{cases}}\)

\(a,x^3+3x^2+3x=0\)

\(\Leftrightarrow x\left(x^2+3x+3\right)=0\)

\(\Leftrightarrow x=0\) Vì \(x^2+3x+3>0\forall x\)

\(b,x^3-3x^2+3x=0\)

\(\Leftrightarrow x\left(x^2-3x+3\right)=0\)

\(\Leftrightarrow x=0\)

\(c,\) bạn làm tương tự nha

30 tháng 6 2019

c, x^3 + 6x^2 + 12x = 0

=> x(x^2 + 6x + 12) = 0

=> x(x^2 + 6x + 9 + 3) = 0

=> x[(x + 3)^2 + 3) = 0

=> x = 0 hoặc (x + 3)^2 + 3 = 0

=> x = 0 hoặc (x + 3)^2 = -3 (loại vì (x+3)^2 > 0)

vậy x = 0

a, x^3 + 3x^2 + 3x = 0

=> x(x^2 + 3x + 3) = 0

=>x(x^2 + 3x + 2,25 + 0,75) = 0

=> x[(x + 1,5)^2 + 0,75)] = 0

=> x = 0 hoặc (x + 1,5)^2 + 0,75 = 0

=> x = 0 hoặc (x + 1,5)^2 = -0,75 (loại)

vậy x = 0

b, x^3 - 3x^2 + 3x = 0

=> x(x^2 - 3x + 3) = 0

=> x(x^2 - 3x + 2,25 + 0,75) = 0

=> x[(x - 1,5)^2 + 0,75] = 0

=> x = 0 hoặc (x-1,5)^2 + 0,75 = 0 

=> x = 0 hoặc (x - 1,5)^2 = -0,75 (loại) 

vậy x = 0

c,

<=> \(\left[\begin{matrix}x-1=0\\x^2+5x+2=0\\x^3-1=0\end{matrix}\right.\)

+/ x - 1 = 0 <=> x = 1

+/x2 + 5x + 2 =0 <=> (x + \(\frac{5}{2}\))2 - \(\frac{17}{4}\)= 0 <=> (x + \(\frac{5}{2}\))2 = \(\frac{17}{4}\)<=> x + \(\frac{5}{2}\)= \(\pm\)\(\sqrt{\frac{17}{4}}\)

<=> x = \(\pm\)\(\sqrt{\frac{17}{4}}\) - \(\frac{5}{2}\)

+/ x3 - 1 = 0 <=.> ( x - 1 )(x2 + x + 1 ) = 0

<=> x = 1

Vậy phương trình có Nghiệm là x = 1 và x = \(\pm\)\(\sqrt{\frac{17}{4}}\) - \(\frac{5}{2}\)

d,

x2 + (x + 3)(10 -2x ) = 9

<=> x2 + 10x - 2x2 + 30 - 6x -9 = 0

<=> x2 + 4x + 21 = 0

<=> 7x - x2 + 21 -3x = 0

<=> (x +3)(7-x) =0

<=> \(\left[\begin{matrix}7-x=0\\x+3=0\end{matrix}\right.\) <=> \(\left[\begin{matrix}x=7\\x=-3\end{matrix}\right.\)

Vậy pt có nghiệm là x = -3 và x = 7