Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: (2x-3)(x+2)=0
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{3}{2};-2\right\}\)
b) Ta có: (3x-1)(2x-5)=(3x-1)(x+2)
⇔\(\left(3x-1\right)\left(2x-5\right)-\left(3x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left[\left(2x-5\right)-\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(3x-1\right)\left(2x-5-x-2\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=1\\x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=7\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{3};7\right\}\)
c) Ta có: \(\left(x^2-25\right)+\left(x-5\right)\left(2x-11\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+5\right)+\left(x-5\right)\left(2x-11\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+5+2x-11\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3x-6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\cdot3\cdot\left(x-2\right)=0\)
mà 3≠0
nên \(\left[{}\begin{matrix}x-5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
Vậy: x∈{5;2}
d) Ta có: \(\left(x^2-6x+9\right)-4=0\)
\(\Leftrightarrow\left(x-3\right)^2-2^2=0\)
\(\Leftrightarrow\left(x-3-2\right)\left(x-3+2\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
Vậy: x∈{5;1}
e) Ta có: \(2x^3-5x^2+3x=0\)
\(\Leftrightarrow x\left(2x^2-5x+3\right)=0\)
\(\Leftrightarrow x\left(2x^2-2x-3x+3\right)=0\)
\(\Leftrightarrow x\left[2x\left(x-1\right)-3\left(x-1\right)\right]=0\)
\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\frac{3}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{0;1;\frac{3}{2}\right\}\)
Bài 1:
a) 5(x-3)-4=2(x-1)
\(\Leftrightarrow5x-15-4=2x-2\)
\(\Leftrightarrow5x-19-2x+2=0\)
\(\Leftrightarrow3x-17=0\)
\(\Leftrightarrow3x=17\)
\(\Leftrightarrow x=\frac{17}{3}\)
Vậy: \(x=\frac{17}{3}\)
b) 5-(6-x)=4(3-2x)
\(\Leftrightarrow5-6+x=12-8x\)
\(\Leftrightarrow-1+x-12+8x=0\)
\(\Leftrightarrow-13+9x=0\)
\(\Leftrightarrow9x=13\)
\(\Leftrightarrow x=\frac{13}{9}\)
Vậy: \(x=\frac{13}{9}\)
c) (3x+5)(2x+1)=(6x-2)(x-3)
\(\Leftrightarrow6x^2+3x+10x+5=6x^2-18x-2x+6\)
\(\Leftrightarrow6x^2+13x+5=6x^2-20x+6\)
\(\Leftrightarrow6x^2+13x+5-6x^2+20x-6=0\)
\(\Leftrightarrow33x-1=0\)
\(\Leftrightarrow33x=1\)
\(\Leftrightarrow x=\frac{1}{33}\)
Vậy: \(x=\frac{1}{33}\)
d) \(\left(x+2\right)^2+2\left(x-4\right)=\left(x-4\right)\left(x-2\right)\)
\(\Leftrightarrow x^2+4x+4+2x-8=x^2-2x-4x+8\)
\(\Leftrightarrow x^2+6x-4=x^2-6x+8\)
\(\Leftrightarrow x^2+6x-4-x^2+6x-8=0\)
\(\Leftrightarrow12x-12=0\)
\(\Leftrightarrow x=1\)
Vậy:x=1
Bài 2:
a)\(\frac{x}{3}-\frac{5x}{6}-\frac{15x}{12}=\frac{x}{4}-5\)
\(\Leftrightarrow\frac{x}{3}-\frac{5x}{6}-\frac{5x}{4}-\frac{x}{4}+5=0\)
\(\Leftrightarrow\frac{4x}{12}-\frac{10x}{12}-\frac{15x}{12}-\frac{3x}{12}+\frac{60}{12}=0\)
\(\Leftrightarrow4x-10x-15x-3x+60=0\)
\(\Leftrightarrow-24x+60=0\)
\(\Leftrightarrow-24x=-60\)
\(\Leftrightarrow x=\frac{5}{2}\)
Vậy: \(x=\frac{5}{2}\)
b) \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)
\(\Leftrightarrow\frac{8x-3}{4}-\frac{3x-2}{2}-\frac{2x-1}{2}-\frac{x+3}{4}=0\)
\(\Leftrightarrow\frac{8x-3}{4}-\frac{2\left(3x-2\right)}{4}-\frac{2\left(2x-1\right)}{4}-\frac{x+3}{4}=0\)
\(\Leftrightarrow8x-3-2\left(3x-2\right)-2\left(2x-1\right)-\left(x+3\right)=0\)
\(\Leftrightarrow8x-3-6x+4-4x+2-x-3=0\)
\(\Leftrightarrow-3x=0\)
\(\Leftrightarrow x=0\)
Vậy: x=0
c) \(\frac{x-1}{2}-\frac{x+1}{15}-\frac{2x-13}{6}=0\)
\(\Leftrightarrow\frac{15\left(x-1\right)}{30}-\frac{2\left(x+1\right)}{30}-\frac{5\left(2x-13\right)}{30}=0\)
\(\Leftrightarrow15\left(x-1\right)-2\left(x+1\right)-5\left(2x-13\right)=0\)
\(\Leftrightarrow15x-15-2x-2-10x+65=0\)
\(\Leftrightarrow3x+48=0\)
\(\Leftrightarrow3x=-48\)
\(\Leftrightarrow x=-16\)
Vậy: x=-16
d) \(\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}=\frac{1-x}{2}-2\)
\(\Leftrightarrow\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}-\frac{1-x}{2}+2=0\)
\(\Leftrightarrow\frac{9\left(3-x\right)}{24}+\frac{16\left(5-x\right)}{24}-\frac{12\left(1-x\right)}{24}+\frac{48}{24}=0\)
\(\Leftrightarrow9\left(3-x\right)+16\left(5-x\right)-12\left(1-x\right)+48=0\)
\(\Leftrightarrow27-9x+80-16x-12+12x+48=0\)
\(\Leftrightarrow-13x+143=0\)
\(\Leftrightarrow-13x=-143\)
\(\Leftrightarrow x=11\)
Vậy: x=11
e) \(\frac{3\left(5x-2\right)}{4}-2=\frac{7x}{3}-5\left(x-7\right)\)
\(\Leftrightarrow\frac{3\left(5x-2\right)}{4}-2-\frac{7x}{3}+5\left(x-7\right)=0\)
\(\Leftrightarrow\frac{9\left(5x-2\right)}{12}-\frac{24}{12}-\frac{28x}{12}+\frac{60\left(x-7\right)}{12}=0\)
\(\Leftrightarrow9\left(5x-2\right)-24-28x+60\left(x-7\right)=0\)
\(\Leftrightarrow45x-18-24-28x+60x-420=0\)
\(\Leftrightarrow77x-462=0\)
\(\Leftrightarrow77x=462\)
\(\Leftrightarrow x=6\)
Vậy:x=6
Bài 3:
a) \(\left(5x-4\right)\left(4x+6\right)=0\)
\(\Leftrightarrow\left(5x-4\right)\cdot2\cdot\left(2x+3\right)=0\)
Vì \(2\ne0\)
nên \(\left[{}\begin{matrix}5x-4=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=4\\2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{5}\\x=\frac{-3}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{4}{5};-\frac{3}{2}\right\}\)
b) \(\left(x-5\right)\left(3-2x\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\\3x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{3}{2}\\x=\frac{-4}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{5;\frac{3}{2};\frac{-4}{3}\right\}\)
c) \(\left(2x+1\right)\left(x^2+2\right)=0\)
Ta có: \(\left(2x+1\right)\left(x^2+2\right)=0\)(1)
Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow x^2+2\ge2\ne0\forall x\)(2)
Từ (1) và (2) suy ra:
\(2x+1=0\)
\(\Leftrightarrow2x=-1\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy: \(x=\frac{-1}{2}\)
d) \(\left(8x-4\right)\left(x^2+2x+2\right)=0\)
\(\Leftrightarrow4\left(2x-1\right)\left(x^2+2x+2\right)=0\)
Ta có: \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\)
Ta lại có \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^2+1\ge1\ne0\forall x\)(3)
Ta có: \(4\ne0\)(4)
Từ (3) và (4) suy ra
2x-1=0
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy: \(x=\frac{1}{2}\)
Bài 4:
a) \(\left(x-2\right)\left(2x+3\right)=\left(x-1\right)\left(x-2\right)\)
\(\Leftrightarrow2x^2+3x-4x-6=x^2-2x-x+2\)
\(\Leftrightarrow2x^2-x-6=x^2-3x+2\)
\(\Leftrightarrow2x^2-x-6-x^2+3x-2=0\)
\(\Leftrightarrow x^2+2x-8=0\)
\(\Leftrightarrow x^2+2x+1-9=0\)
\(\Leftrightarrow\left(x+1\right)^2-3^2=0\)
\(\Leftrightarrow\left(x+1-3\right)\left(x+1+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
Vậy: \(x\in\left\{2;-4\right\}\)
b) \(\left(2x+5\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)
\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)-\left(x-5\right)\left(4-x\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(2x+5+x-5\right)=0\)
\(\Leftrightarrow\left(x-4\right)\cdot3x=0\)
Vì \(3\ne0\)
nên \(\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy: \(x\in\left\{0;4\right\}\)
c) \(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left[\left(3x-1\right)-\left(2x-3\right)\right]=0\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1-2x+3\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{-\frac{1}{3};-2\right\}\)
d) \(\left(x+2\right)^2=9\left(x^2-4x+4\right)\)
\(\Leftrightarrow x^2+4x+4-9\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow x^2+4x+4-9x^2+36x-36=0\)
\(\Leftrightarrow-8x^2+40x-32=0\)
\(\Leftrightarrow-\left(8x^2-40x+32\right)=0\)
\(\Leftrightarrow-8\left(x^2-5x+4\right)=0\)
Vì \(-8\ne0\)
nên \(x^2-5x+4=0\)
\(\Leftrightarrow x^2-x-4x+4=0\)
\(\Leftrightarrow x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)
Vậy: \(x\in\left\{1;4\right\}\)
e) \(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)
\(\Leftrightarrow4\left(4x^2+28x+49\right)-9\left(x^2+6x+9\right)=0\)
\(\Leftrightarrow16x^2+112x+196-9x^2-54x-81=0\)
\(\Leftrightarrow7x^2+58x+115=0\)
\(\Leftrightarrow7x^2+23x+35x+115=0\)
\(\Leftrightarrow x\left(7x+23\right)+5\left(7x+23\right)=0\)
\(\Leftrightarrow\left(7x+23\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}7x+23=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}7x=-23\\x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-23}{7}\\x=-5\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{-23}{7};-5\right\}\)
Bài 5:
a) \(\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2-1\right)\)
\(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)-\left(3x+2\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(3x+2\right)\left(x+1\right)-\left(3x+2\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left[\left(3x-2\right)-\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(3x-2-x+1\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\x+1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-2\\x=-1\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-2}{3}\\x=-1\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{-\frac{2}{3};-1;\frac{1}{2}\right\}\)
b) \(\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow x^2-2x+1-1+x^2=x+3-x^2-3x\)
\(\Leftrightarrow2x^2-2x=-x^2-2x+3\)
\(\Leftrightarrow2x^2-2x+x^2+2x-3=0\)
\(\Leftrightarrow3x^2-3=0\)
\(\Leftrightarrow3\left(x^2-1\right)=0\)
\(\Leftrightarrow3\left(x-1\right)\left(x+1\right)=0\)
Vì \(3\ne0\)
nên \(\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy: \(x\in\left\{1;-1\right\}\)
c) \(x^4+x^3+x+1=0\)
\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2\cdot\left(x^2-x+1\right)=0\)(5)
Ta có: \(x^2-x+1=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Ta lại có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\ne0\forall x\)(6)
Từ (5) và (6) suy ra
\(\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy: x=-1
bạn tự kết luận nhé !
a, \(4x-3=2\left(x-3\right)\Leftrightarrow4x-3=2x-6\)
\(\Leftrightarrow2x=-3\Leftrightarrow x=-\frac{3}{2}\)
b, \(5x^2+x=0\Leftrightarrow x\left(5x+1\right)=0\Leftrightarrow x=-\frac{1}{5};x=0\)
c, \(\left(3x-5\right)\left(x+7\right)=0\Leftrightarrow x=-7;x=\frac{5}{3}\)
d, \(\frac{2}{x-3}-\frac{3}{x+3}=\frac{7x-1}{x^2-9}\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow\frac{2\left(x+3\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{7x-1}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow2x+6-3x+9=7x-1\Leftrightarrow-x+15=7x-1\)
\(\Leftrightarrow-8x=-16\Leftrightarrow x=2\)( tmđk )
e, \(\left(12x-1\right)\left(6x-1\right)\left(4x-1\right)\left(3x-1\right)=330\)
\(\Leftrightarrow\left(12x-1\right)\left(12x-2\right)\left(12x-3\right)\left(12x-4\right)=330.24=7920\)
\(\Leftrightarrow\left(12x-1\right)\left(12x-4\right)\left(12x-2\right)\left(12x-3\right)=7920\)
\(\Leftrightarrow\left(144x^2-60x+4\right)\left(144x^2-60x+6\right)=7920\)
Đặt \(144x^2-60x+4=t\)
\(t\left(t+2\right)=7920\Leftrightarrow t^2+2t-7920=0\)
\(\Leftrightarrow\left(t-88\right)\left(t+90\right)=0\Leftrightarrow t=88;t=-90\)
suy ra :TH1 : \(144x^2-60x+4=88\Leftrightarrow12\left(12x+7\right)\left(x-1\right)=0\Leftrightarrow x=-\frac{7}{12};x=1\)
TH2 : \(144x^2-60x+4=-90\Leftrightarrow144x^2-60x+94=0\)
\(\Leftrightarrow x=\frac{5\pm3\sqrt{39}i}{24}\)
Bài 1:
a) (5x-4)(4x+6)=0
\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\4x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=4\\4x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{2}\end{cases}}}\)
b) (x-5)(3-2x)(3x+4)=0
<=> x-5=0 hoặc 3-2x=0 hoặc 3x+4=0
<=> x=5 hoặc x=\(\frac{3}{2}\)hoặc x=\(\frac{-4}{3}\)
c) (2x+1)(x2+2)=0
=> 2x+1=0 (vì x2+2>0)
=> x=\(\frac{-1}{2}\)
bài 1:
a) (5x - 4)(4x + 6) = 0
<=> 5x - 4 = 0 hoặc 4x + 6 = 0
<=> 5x = 0 + 4 hoặc 4x = 0 - 6
<=> 5x = 4 hoặc 4x = -6
<=> x = 4/5 hoặc x = -6/4 = -3/2
b) (x - 5)(3 - 2x)(3x + 4) = 0
<=> x - 5 = 0 hoặc 3 - 2x = 0 hoặc 3x + 4 = 0
<=> x = 0 + 5 hoặc -2x = 0 - 3 hoặc 3x = 0 - 4
<=> x = 5 hoặc -2x = -3 hoặc 3x = -4
<=> x = 5 hoặc x = 3/2 hoặc x = 4/3
c) (2x + 1)(x^2 + 2) = 0
vì x^2 + 2 > 0 nên:
<=> 2x + 1 = 0
<=> 2x = 0 - 1
<=> 2x = -1
<=> x = -1/2
bài 2:
a) (2x + 7)^2 = 9(x + 2)^2
<=> 4x^2 + 28x + 49 = 9x^2 + 36x + 36
<=> 4x^2 + 28x + 49 - 9x^2 - 36x - 36 = 0
<=> -5x^2 - 8x + 13 = 0
<=> (-5x - 13)(x - 1) = 0
<=> 5x + 13 = 0 hoặc x - 1 = 0
<=> 5x = 0 - 13 hoặc x = 0 + 1
<=> 5x = -13 hoặc x = 1
<=> x = -13/5 hoặc x = 1
b) (x^2 - 1)(x + 2)(x - 3) = (x - 1)(x^2 - 4)(x + 5)
<=> x^4 - x^3 - 7x^2 + x + 6 = x^4 + 4x^3 - 9x^2 - 16x + 20
<=> x^4 - x^3 - 7x^2 + x + 6 - x^4 - 4x^3 + 9x^2 + 16x - 20 = 0
<=> -5x^3 - 2x^2 + 17x - 14 = 0
<=> (-x + 1)(x + 2)(5x - 7) = 0
<=> x - 1 = 0 hoặc x + 2 = 0 hoặc 5x - 7 = 0
<=> x = 0 + 1 hoặc x = 0 - 2 hoặc 5x = 0 + 7
<=> x = 1 hoặc x = -2 hoặc 5x = 7
<=> x = 1 hoặc x = -2 hoặc x = 7/5
Bài 1:
1,\(\left(x+2\right)\left(x^2-3x+5\right)=\left(x+2\right).x^2\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-3x+5\right)-\left(x+2\right).x^2=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-3x+5-x^2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(-3x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\-3x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{5}{3}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{\dfrac{5}{3};-2\right\}\)
2,\(2x^2-x=3-6x\)
\(\Leftrightarrow2x^2-x-3+6x=0\)
\(\Leftrightarrow\left(2x^2+6x\right)-\left(x+3\right)=0\)
\(\Leftrightarrow2x\left(x+3\right)-\left(x+3\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{\dfrac{1}{2};-3\right\}\)
3,\(x^3+2x^2+x+2=0\)
\(\Leftrightarrow x^2\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{-1;-2\right\}\)
4.\(x^3+2x^2-x-2=0\)
\(\Leftrightarrow x^2\left(x+2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=0\\x+2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{1;-2\right\}\)
Nản quá không làm nữa đâu.Sorry
1: \(\Leftrightarrow\left(x+2\right)\left(x^2-3x+5-x^2\right)=0\)
=>(x+2)(-3x+5)=0
=>x=-2 hoặc x=5/3
2: \(\Leftrightarrow2x^2+5x-3=0\)
\(\Leftrightarrow2x^2+6x-x-3=0\)
=>(x+3)(2x-1)=0
=>x=1/2 hoặc x=-3
3: \(\Leftrightarrow x^2\left(x+2\right)-\left(x+2\right)=0\)
=>(x+2)(x+1)(x-1)=0
hay \(x\in\left\{-2;-1;1\right\}\)
5: \(3x^2+7x-20=0\)
\(\Leftrightarrow3x^2+12x-5x-20=0\)
=>(x+4)(3x-5)=0
=>x=5/3 hoặc x=-4
Câu 1:
\((x+2)(x^2-3x+5)=(x+2)x^2\)
\(\Leftrightarrow (x+2)(x^2-3x+5)-(x+2)x^2=0\)
\(\Leftrightarrow (x+2)(x^2-3x+5-x^2)=0\)
\(\Leftrightarrow (x+2)(-3x+5)=0\Rightarrow \left[\begin{matrix} x+2=0\\ -3x+5=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-2\\ x=\frac{5}{3}\end{matrix}\right.\)
Câu 2:
\(2x^2-x=3-6x\)
\(\Leftrightarrow x(2x-1)=3(1-2x)=-3(2x-1)\)
\(\Leftrightarrow x(2x-1)+3(2x-1)=0\)
\(\Leftrightarrow (2x-1)(x+3)=0\Rightarrow \left[\begin{matrix} x=\frac{1}{2}\\ x=-3\end{matrix}\right.\)
Câu 3:
\(x^3+2x^2+x+2=0\)
\(\Leftrightarrow (x^3+2x^2)+(x+2)=0\Leftrightarrow x^2(x+2)+(x+2)=0\)
\(\Leftrightarrow (x+2)(x^2+1)=0\Rightarrow \left[\begin{matrix} x+2=0\\ x^2+1=0(\text{vô lý})\end{matrix}\right.\Rightarrow x=-2\)
Câu 5:
\(3x^2+7x-20=0\)
\(\Leftrightarrow 3x^2+12x-5x-20=0\)
\(\Leftrightarrow 3x(x+4)-5(x+4)=0\)
\(\Leftrightarrow (3x-5)(x+4)=0 \Rightarrow \left[\begin{matrix} x=\frac{5}{3}\\ x=-4\end{matrix}\right.\)
c,
<=> \(\left[\begin{matrix}x-1=0\\x^2+5x+2=0\\x^3-1=0\end{matrix}\right.\)
+/ x - 1 = 0 <=> x = 1
+/x2 + 5x + 2 =0 <=> (x + \(\frac{5}{2}\))2 - \(\frac{17}{4}\)= 0 <=> (x + \(\frac{5}{2}\))2 = \(\frac{17}{4}\)<=> x + \(\frac{5}{2}\)= \(\pm\)\(\sqrt{\frac{17}{4}}\)
<=> x = \(\pm\)\(\sqrt{\frac{17}{4}}\) - \(\frac{5}{2}\)
+/ x3 - 1 = 0 <=.> ( x - 1 )(x2 + x + 1 ) = 0
<=> x = 1
Vậy phương trình có Nghiệm là x = 1 và x = \(\pm\)\(\sqrt{\frac{17}{4}}\) - \(\frac{5}{2}\)
d,
x2 + (x + 3)(10 -2x ) = 9
<=> x2 + 10x - 2x2 + 30 - 6x -9 = 0
<=> x2 + 4x + 21 = 0
<=> 7x - x2 + 21 -3x = 0
<=> (x +3)(7-x) =0
<=> \(\left[\begin{matrix}7-x=0\\x+3=0\end{matrix}\right.\) <=> \(\left[\begin{matrix}x=7\\x=-3\end{matrix}\right.\)
Vậy pt có nghiệm là x = -3 và x = 7