K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2018

ĐK:\(x\ge-2010\)
\(x^2+\sqrt{x+2010}=2010\)
\(\Leftrightarrow x^2=2010-\sqrt{x+2010}\)
\(\Leftrightarrow x^2+x+\dfrac{1}{4}=x+2010-2\sqrt{x+2010}\dfrac{1}{2}+\dfrac{1}{4}\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=\left(\sqrt{x+2010}-\dfrac{1}{2}\right)^2\)
\(\Leftrightarrow x+\dfrac{1}{2}=\sqrt{x+2010}-\dfrac{1}{2}\)
ĐK:\(x\ge\dfrac{1}{2}\)
=>\(x^2+2x+1=x+2010\)
\(\Leftrightarrow x^2+x-2009=0\)
Giải phương trình này ra x=\(\left\{\dfrac{-1+3\sqrt{893}}{2}\right\}\)

31 tháng 5 2019

thôi khỏi nha các bạn mình làm được rồi

10 tháng 8 2019

ĐK:....

Đặt \(\sqrt{x+2010}=a\ge0\) thì \(a^2-x=2010\)

Kết hợp đề bài ta có hệ: \(\left\{{}\begin{matrix}x^2+a=2010\\a^2-x=2010\end{matrix}\right.\)

Trừ theo vế hai pt của hệ ta được:

\(\left(x^2-a^2\right)+\left(a+x\right)=0\)

\(\Leftrightarrow\left(x-a\right)\left(x+a\right)+\left(x+a\right)=0\)

\(\Leftrightarrow\left(x+a\right)\left(x-a+1\right)=0\)

Auto làm nốt. P/s: Em làm đúng ko ta?:V

7 tháng 6 2015

Ta có:\(x^3=3+2\sqrt{2}+3-2\sqrt{2}+3.\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\)

     \(=\) \(6+\sqrt[3]{9-8}.x\)\(=3x+6\)

Tương tự: \(y^3=3y+34\)

Do đó:\(x^3+y^3-3\left(x+y\right)+2010=3x+6+3y+34-3\left(x+y\right)+2010\)

\(=3\left(x+y\right)-3\left(x+y\right)+34+6+2010=2050\)

1 tháng 5 2017

(x-√(x^2+2010).(x+√(x^2+2010)).(y+√(y^2+... = 2010.(x-√(x^2+2010) 
<=> -2010.(y+√(y^2+2010) = 2010.(x-√(x^2+2010) 
<=> - (y+√(y^2+2010) = (x-√(x^2+2010) 
<=> (x-√(x^2+2010) = - (y+√(y^2+2010) 
+++ (x+√(x^2+2010)) (y+√(y^2+2010))(y-√(y^2+2010)) = 2010.(y-√(y^2+2010)) 
<=> -2010.(x+√(x^2+2010) = 2010.(y-√(y^2+2010)) 
<=> - (x+√(x^2+2010) = (y-√(y^2+2010) (**) 
...Lấy (*) - (**) vế theo vế,ta có: 
2x = -2y 
<=> x + y = 0 

26 tháng 4 2017

bằng 2010 hay \(\sqrt{2010}\) vậy bạn

10 tháng 11 2016

gt pt nó thành nhân tử thay vào P tính

10 tháng 11 2016

mk nhớ lm bài tương tự thế này r` bn chịu khó mở ra xem lại ở đây olm.vn/?g=page.display.showtrack&id=424601&limit=260, ấn vào chữ Trang tiếp theo để tìm thêm nhé

2 tháng 9 2018

Đặt \(a=\sqrt{2010}\) . Ta có: \(\left(x+\sqrt{x^2+a}\right)\left(y+\sqrt{y^2+a}\right)=a\)  (*)

Nhân cả hai vế của (*) với \(\sqrt{x^2+a}-x\) ,ta đc:

\(\left(x+\sqrt{x^2+a}\right)\left(\sqrt{x^2+a}-x\right)\left(y+\sqrt{y^2+a}\right)=a\left(\sqrt{x^2+a}-x\right)\)

\(\Leftrightarrow\left(x^2+a-x^2\right)\left(y+\sqrt{y^2+a}\right)=a\left(\sqrt{x^2+a}-x\right)\)

\(\Leftrightarrow a\left(y+\sqrt{y^2+a}\right)=a\left(\sqrt{x^2+a}-x\right)\)

\(\Leftrightarrow y+\sqrt{y^2+a}=\sqrt{x^2+a}-x\)  (1)

Tương tự nhân cả hai vế của (*) với \(\sqrt{y^2+a}-y\) ,ta đc:

\(x+\sqrt{x^2+a}=\sqrt{y^2+a}-y\)  (2)

Cộng 2 vế của (1) và (2),ta đc S = x + y = 0

=.= hok tốt!!